Девятый знак - Фиалков Юрий Яковлевич (читать книгу онлайн бесплатно полностью без регистрации .txt) 📗
Теперь посмотрим, сколько операций потребовалось произвести для того, чтобы проанализировать раствор с помощью весов. Концентрация нашего раствора 0,0005 %. Это значит, что в миллилитре его содержится всего пять миллионных долей грамма вещества. Если мы выпарим раствор досуха и попытаемся взвесить сухой остаток, то весы ничего не зафиксируют: как мы помним, аналитические весы реагируют лишь на количества, не меньшие чем одна-две десятитысячные доли грамма. Вот почему придется упаривать не меньше двух литров раствора, чтобы получить тот ничтожный осадок, который все же может быть зафиксирован весами.
Многим известна краска «берлинская лазурь» красивого синего цвета. Эта краска образуется, если к раствору какой-либо соли железа прилить раствор желтой кровяной соли. Оказывается, окраска возникает даже в том случае, если содержание железа в растворе не превышает трех сотых долей грамма в одном литре, или трех стотысячных долей грамма в одном миллилитре. А 0,00003 грамма — это уже обычным аналитическим весам не «под силу». Желтую кровяную соль поэтому называют реактивом на соединения железа. Как видим, это очень чувствительный реактив.
Однако чувствительность желтой кровяной соли — ничто по сравнению с действием другого определителя железа, органического вещества фенантролина. С помощью этого реактива можно обнаружить в одном миллилитре раствора две десятимиллионные доли грамма железа: 0,0000002, или 2·10-7.
Органические реактивы найдены почти на все элементы. Каждый из этих реактивов позволяет обнаружить с помощью соответствующей окраски от стотысячных до десятимиллионных долей грамма элемента в одном миллилитре раствора. Очевидно, что никакие весы не могут сравниться по чувствительности с колориметрическими реакциями.
Кстати, определение содержания золота в ртути в опытах Литте проводилось реактивом, обладающим весьма длинным и звучным названием: паратетраметилдиаминодифенилметан. Этот реактив позволяет обнаружить миллионные доли грамма золота.
Если учесть, что в каждом грамме обычной ртути содержатся вдесятеро большие количества золота, то становится понятным, что Литте и его сотрудники открыли лишь то, что было в ртути с самого начала (внеся, впрочем, дополнительные количества золота из очков, запонок, колец и других золотых предметов).
С помощью органических реактивов научились не только вызывать появление окраски, которая «выдает» нам присутствие того или иного элемента в растворе, но также и переводить эти элементы в не растворимые в воде соединения. Можно назвать здесь в качестве примера органический реактив диметилглиоксим. Этот реактив был открыт известным русским химиком Л. А. Чугаевым в начале нашего столетия. Если в растворе, к которому прибавлен диметилглиоксим, имеются хотя бы ничтожные количества металла никеля, то сейчас же образуется осадок. Взвешивая осадок, можно судить, сколько металла было в исследуемом растворе. С помощью диметилглиоксима можно определить содержание никеля в растворе, даже если оно не превышает одной стомиллионной грамма (10-8) в одном миллилитре.
Начиная с 30-х годов в практику химического анализа все больше стали внедряться так называемые физические методы. Ученые настойчиво искали заменителей своим органам чувств: «глаза», которые видели бы лучше человеческих, «руки», которые были бы чувствительнее наших, «слух», который позволял бы слышать неслышимое.
Эти методы в настоящее время прочно вошли в практику химических исследований и оказали неоценимую услугу ученым.
Здесь прежде всего надо назвать спектроскопию. Спектроскопия — один из самых молодых методов исследования, но вместе с тем и, пожалуй, самый уважаемый. Когда ровно сто лет назад было открыто, что каждый элемент по-своему окрашивает пламя горелки, это не вызвало поначалу особого удивления. В середине XIX столетия, когда возникла спектроскопия, химия переживала бурное время важнейших открытий. Это были первые годы существования молекулярной гипотезы, чуть ли не каждый месяц приносил новые, и притом весьма большие, достижения в области органической химии, рождались новые методы анализа.
Первые же шаги спектроскопии начались с научного триумфа. «Боевым крещением» этого метода было открытие двух новых элементов — рубидия и цезия. Открытие нового элемента всегда почиталось делом великой важности и представляло весьма видное событие в химической науке. Вот почему спектроскопия сразу обратила на себя внимание.
Уважение к этому методу возросло еще больше, когда за какой-нибудь десяток лет с ее помощью были открыты элементы таллий, индий, германий, галлий и другие. Апофеозом же этого метода было открытие гелия.
В 1868 году в протуберанцах [2] Солнца была замечена яркая желтая линия, которая не отвечала ни одному из известных на Земле элементов. Этот элемент по имени Солнца (солнце по-гречески — «гелиос») был назван гелием. Прошло несколько десятков лет, прежде чем гелий был открыт на нашей планете, вначале в виде незначительных примесей к минералам, а затем уже в атмосфере.
Интересно, что с помощью спектроскопии были открыты те элементы, содержание которых в минералах и породах ничтожно. Уже одно это может указывать на то, что спектроскопия позволяет обнаружить чрезвычайно малые количества элементов. Нетрудно убедиться самому, что это именно так. Для этого не надо располагать сложными оптическими приборами, какими сейчас пользуются при спектроскопических измерениях. Достаточно иметь спиртовую или, еще лучше, газовую горелку. Если внести в пламя горелки платиновую или хорошо прокаленную стальную проволоку (например, струну), то окраска пламени не изменится. Но достаточно предварительно провести этой проволочкой по ладони, а затем внести в пламя, как оно окрасится в ясно видимый желтый цвет. Это цвет элемента натрия. Откуда натрий, спросите вы? Дело в том, что поры нашей кожи беспрестанно выделяют пот, который содержит заметные количества поваренной соли — хлористого натрия. Вот почему в пламени горелки «проявился» цвет этого элемента. Теперь представьте себе, сколько хлористого натрия могло содержаться на поверхности ладони, и чувствительность спектроскопии станет очевидной.
Действительно, с помощью очень простых установок мы можем улавливать количества элементов в стомиллионные доли грамма. Это значит, что если нужный нам элемент содержится в сырье (породе или минерале) в количестве одного грамма на сто тонн, то он все равно будет обнаружен методом спектроскопии.
Спектроскопия и органические реактивы — вот, пожалуй, весь тот арсенал средств, которыми располагали химики тридцатых годов при изучении малых количеств веществ.
Тем более удивительно, что, имея такие скромные в сравнении с нашим временем возможности, химики тех лет обогатили науку замечательными достижениями. Прежде чем познакомить читателя с этими открытиями, я хочу рассказать об одном деле, которое слушалось в 1933 году в германском таможенном суде. Я привожу эту историю отнюдь не для того, чтобы развлечь читателя детективным рассказом. Дело в том, что события, разыгравшиеся в чопорных стенах имперского суда, самым тесным образом связаны с некоторыми химическими открытиями, о которых идет речь в этой книге.
В имперском таможенном суде был большой день. Еще бы! Слушалось дело не о каких-то контрабандистах, спрятавших в подошвах башмаков три пары чулок, или об очередном торговце, не заплатившем вовремя пошлину за партию лионского белья. На скамье подсудимых сидели — одновременно! — восемь крупнейших берлинских ювелиров. Слушалось дело об американской платине.