Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Беллос Алекс (книги регистрация онлайн .TXT) 📗
Другое направление работы Станисласа Деэна — это исследование состояния, называемого дискалькулия, или «числовой дальтонизм», при котором нарушено восприятие чисел. По оценкам, оно может наблюдаться у 3–6 процентов населения. Подверженные дискалькулии не «ухватывают» числа так, как это делают большинство людей. Например, какое из этих двух чисел больше:
65 или 24?
Что ж тут сложного, скажете вы, конечно 65. Почти каждый из нас найдет правильный ответ менее чем за полсекунды. Но если у вас дискалькулия, то, чтобы ответить на этот вопрос, вам понадобится не менее трех секунд. Люди могут быть подвержены этому состоянию в разной степени, но те, кому все же поставлен диагноз «дискалькулия», как правило, часто испытывают сложности в установлении корреляций между символами для чисел (например, 5) и самими числами, представляемыми этими символами. Кроме того, им трудно считать. Дискалькулия не означает полную неспособность считать, но те, кто страдает ею, как правило, лишены фундаментальных интуитивных навыков в отношении чисел и вместо этого полагаются на альтернативные стратегии, позволяющие справляться с числами в быту, например чаще используя пальцы. В тяжелых случаях страдающие дискалькулией с трудом определяют время, глядя на часы.
Если вы отлично успевали в школе по всем предметам, кроме математики, вы вполне можете оказаться дискалькуликом. (Впрочем, если у вас с математикой всегда было плохо, то вряд ли вы возьметесь читать эту книгу.) Это состояние считается главной причиной неспособности к математическому мышлению. Понимание дискалькулии имеет актуальное социальное содержание, потому что люди, малоспособные к восприятию чисел, с гораздо большей вероятностью испытывают трудности при поиске работы или подвергаются различного рода дискриминации. Дискалькулия плохо изучена. Ее можно воспринимать как «числовой аналог» дислексии; оба этих состояния похожи тем, что затрагивают примерно одинаковый процент людей и, по-видимому, не влияют на уровень интеллекта в целом. Однако о дислексии известно гораздо больше, чем о дискалькулии. Имеются даже оценки, согласно которым научных статей по дислексии примерно в десять раз больше, чем статей по дискалькулии. Одна из причин того, почему исследования дискалькулии так сильно отстают, заключается в том, что имеется также много других причин, из-за которых человек может оказаться не в ладах с математикой, — эту науку часто плохо преподают в школе, по математике легко отстать, если вы пропустили много занятий, на которых объясняются ключевые концепции. Помимо этого, в социальном плане скорее допустимо плохо управляться с числами, чем плохо уметь читать.
Невролог Брайен Баттеруорт из Университетского колледжа в Лондоне часто пишет рекомендации для людей, которых он проверил на дискалькулию, объясняя потенциальным работодателям, что плохие оценки по математике в школьном аттестате не являются результатом лени или отсутствия умственных способностей. Дискалькулики могут добиваться высоких достижений во всех других областях, кроме мира чисел. Возможно даже, говорит Баттеруорт, быть дискалькуликом и при этом добиваться успехов в математике. Имеется несколько областей математики, такие как логика и геометрия, где приоритет отдается дедуктивным рассуждениям или пространственному воображению, а не числам и уравнениям. В целом, однако, дискалькулики вообще плохо успевают по математике.
Значительная часть исследований по дискалькулии — бихевиористские. Например, компьютерное тестирование десятков тысяч школьников. Во время тестов они должны просто сказать, какое из двух предложенных чисел больше. Некоторые исследования — неврологические, в них сравниваются сделанные с помощью метода магнитного резонанса изображения мозга людей, страдающих и не страдающих дискалькулией, чтобы увидеть, как различаются протекающие в них токи. В когнитивных науках продвижение в понимании различных умственных способностей часто происходит как результат изучения случаев нарушения данной способности. Постепенно формируется более ясная картина того, что же представляет собой дискалькулия, и того, как работает мозг в процессе восприятия чисел.
Действительно, в последнее время в неврологии сделано немало новых важных открытий в области исследований числовой когнитивности. Например, появилась возможность увидеть, что происходит с отдельными нейронами в мозгу у обезьяны, когда она думает о точном числе точек.
Андреас Нидер из Университета Тюбингена, расположенного на юге Германии, научил макак-резусов думать о числах. Он добился этого, показывая им на экране компьютера один набор точек, а затем, после интервала в одну секунду, — другой набор точек. Обезьянок обучили, что если во втором наборе будет столько же точек, сколько и в первом, и они нажмут на рычаг, то получат награду в виде яблочного сока. Если же во втором наборе окажется другое число точек, а они все равно нажмут на рычаг, то яблочного сока не будет. Примерно через год обезьянки научились нажимать рычаг только в том случае, когда число точек в первом наборе совпадало с числом точек во втором. Нидер и его коллеги утверждают, что в течение той секунды, которая проходит перед появлением на экране компьютера второй картинки, обезьянки думают о числе точек, которые они увидели на первой картинке.
Далее Нидер решил, что теперь надо выяснить, что происходит у обезьянок в мозгу в то время, когда они держат эти числа у себя в голове. Для этого он, просверлив дырочку в обезьяньем черепе, внедрил в нервную ткань мозга электрод диаметром в два микрона. Этот электрод настолько мал, что никак не вредит мозгу и не вызывает болевых ощущений. (Внедрение электродов в человеческий мозг для исследований считается превышением этических норм, хотя и допустимо по медицинским показаниям, например при лечении эпилепсии.) Нидер располагал электрод в обезьяньем мозгу так, чтобы он находился напротив префронтальной коры, а затем начинал эксперимент с точками.
Электрод настолько чувствителен, что может улавливать электрический импульс в отдельных нейронах. Когда обезьянки «думают» о числах, Нидер видит, что определенные нейроны активизируются, — у обезьянок целые области в мозгу «зажигаются». Исследуя эту картину подробнее, он пришел к чрезвычайно интересному открытию. Чувствительные к числам нейроны реагируют с различной степенью интенсивности в зависимости от того, о каком числе обезьянка в данный момент думает. Причем у каждого нейрона есть «любимое» число — то, из-за которого данный нейрон становится максимально активным. Имеется, например, кластер из нескольких тысяч нейронов, которые «любят» число 1. Эти нейроны ярко сияют, когда обезьяна думает о единице, менее ярко — о двойке, еще менее ярко — о тройке и т. д. Имеется другая группа нейронов, которые предпочитают число 2. Эти нейроны сияют ярче всего, когда обезьяна думает о двойке; менее ярко, когда она думает о единице или тройке, и становятся совсем тусклыми, когда обезьяна думает о четверке. Другая группа нейронов полюбила число 3, а еще одна — число 4. Нидер проводил эксперименты вплоть до 30, и для каждого числа он нашел нейроны, которые предпочитают именно это число.
Результаты, полученные Нидером, позволяют объяснить, почему наша интуиция тяготеет к приближенному восприятию чисел. Когда обезьянка думает о числе 4, наиболее активны, конечно, нейроны, которые предпочитают число 4. Но нейроны, которые предпочитают тройку, и нейроны, которые предпочитают пятерку, тоже активны, хотя и в меньшей степени. Это, по-видимому, связано с тем, что мозг обезьянки при этом одновременно думает и о числах, окружающих четверку. «Восприятие числа размыто шумом, — объясняет Нидер. — Обезьяны способны представлять себе кардинальности только приблизительным образом».
Можно быть почти уверенным, что то же самое происходит и в человеческом мозгу. Тут возникает интересный вопрос; если наш мозг способен представлять числа только на оценочном уровне, то как же мы вообще сумели их «изобрести»? «Восприятие чисел в точном смысле — это уникальное свойство человеческого мозга, которое, скорее всего, развилось из нашей способности точно выражать числа с помощью символов», — заключает Нидер. Таким образом, числа — артефакт, продукт человеческой культуры, а не что-то, данное нам от природы.