Человек и бег - Мильнер Евгений Григорьевич "aforist" (книги онлайн читать бесплатно TXT) 📗
Немаловажное значение имеет и экономизация сердечной деятельности, которая выражается в снижении частоты сердеч ных сокращений в состоянии покоя (брадикардия). У выдающихся атлетов современности пульс в покое снижался до 40-42, а у некоторых до 36 уд/мин. У трехкратного олимпийского чемпиона в беге на 800 и 1500 м Питера Снелла, ученика знаменитого новозеландского тренера Артура Лидьярда, пульс в покое был равен 38 уд/мин, у олимпийского чемпиона Петра Болотникова -42, у известного советского марафонца Феодосия Ванина —Зб, у легендарного финского бегуна Пааво Нурми — 38 уд/мин.
Брадикардия развивается не только у спортсменов, но и у любителей оздоровительного бега. Так, Пилчер (281) наблюдал у людей среднего возраста под влиянием беговых тренировок снижение частоты сердечных сокращений в покое параллельно увеличению количества пробегаемых километров. При увеличе-нии величины недельной нагрузки с 8 до 48 км пульс снижался в среднем с 58 до 45 уд/мин. У мужчин нашего КЛБ старше 40 лет пульс в покое утром, после сна составляет 48—54 уд/мин а у некоторых 40—42 уд/мин.
Благотворное влияние бега на организм человека поистине безгранично. Многие авторы отмечают улучшение функции пе-чени, пропорциональное длительности бега (30), что объясняется увеличением потребления кислорода печенью в 2—3 раза по срав-нению с уровнем покоя — с 50 до 100—150 мл/мин (330). В резуль-тате вибрации внутренних органов, возникающей при беге за счет вертикальных колебаний тела, и выделения в кишечник больших количеств магния улучшается его моторика и дренажная функция, вследствие чего бег является незаменимым средством борьбы с запорами.
Для того, чтобы более глубоко осознать действие бега на человеческий организм, нам придется в общих чертах познакомить читателя с его физиологической характеристикой, что мы и сделаем в следующей главе.
Глава II
ЭНЕРГЕТИКА МЫШЕЧНОЙ
ДЕЯТЕЛЬНОСТИ
Вся жизнедеятельность организма обеспечивается за счет взаимодействия двух процессов — ассимиляции и диссимиляции. Ассимиляция (анаболизм) определяет строительную функцию, накопление и обновление веществ. Напротив, диссимиляция (катаболизм) — это непрерывный распад веществ и образование энергии.
Как и где образуется энергия и каким образом она расходуется? Эти вопросы интересовали человека с давних пор.
По наивным представлениям древних, жизненная энергия зарождается в сердце, а оттуда «внутренний жар» распространяется вместе с кровью по всему организму. В середине XIX века господствовало мнение, будто многообразная деятельность организма осуществляется благодаря энергии белковых соединений. Но это были только предположения, не подкрепленные достоверными фактами. Научные же данные и тогда убедительно говорили, что белки выполняют в основном строительную функцию и роль их в энергетике невелика.
Вплоть до начала нынешнего столетия ученые считали, что химическая энергия освобождается только в присутствии кислорода, то есть при реакциях окисления. Правда, во второй половине XIX века Пастер поколебал эту точку зрения, обнаружив, что в микроорганизмах, бактериях, грибках распад некоторых источников энергии проходит без участия кислорода. Но это открытие не произвело впечатления на сторонников «кислородной теории» и не натолкнуло на новые поиски.
В середине XIX века Роберт Майер открыл закон сохранения энергии. История эта примечательна. Майер, будучи судовым врачом, лечил команду корабля от воспаления легких. По прибытии на остров Ява ему пришлось взять кровь у заболевших матросов. К своему удивлению, он обнаружил, что венозная кровь, которая обычно темнее, чем богатая кислородом артериальная, на этот раз незначительно отличается от нее по цвету. Это позволило предположить, что в условиях жаркого климата для организма характерен менее интенсивный обмен веществ. Майер пришел к заключению: в «жизненном процессе происходит лишь превращение вещества и силы, а отнюдь не их создание».
Шли годы, проводились все новые опыты. В качестве объекта исследования в лаборатории прочно вошел нервно-мышечный препарат лягушки. Изолированную мышцу заставляли сокращаться в разных условиях — в присутствии кислорода, атмосфере азота, в особом бескислородном растворе. Результаты подорвали позиции сторонников «кислородной теории»; без кислорода мышца сокращалась, хотя и меньше.
1922 год. Нобелевская премия по физиологии и медицине присуждена двум выдающимся ученым — Хиллу и Мейергофу. Им удалось не только открыть новый путь образования энергии, но и создать стройную по тому времени теорию химических превращений в организме. Было установлено, что гликоген распадается без кислорода, образуя молочную кислоту. При этом выделяется значительное количество энергии. Химическая цепочка реакций завершается уже в присутствии кислорода. Окисление молочной кислоты сопровождается образованием большого количества энергии.
Последующие научные открытия убедительно показали, что энергетический обмен может протекать и без гликолиза, то есть без распада гликогена. Следовательно, существуют какие-то другие виды «горючего». Вещества вскоре были] найдены —ими оказались богатые энергией фосфорные соединения, получившие название макроэргических.
Немногим более 50 лет назад немецкий ученый К. Ломан, исследуя мышцы кролика, обнаружил сложное химическое соединение — аденозинтрифосфорную кислоту (сокращенно АТФ). Формула строения этого вещества достаточно сложна: если ее написать, она займет четверть страницы, поэтому ограничимся лишь упрощенным пояснением. АТФ состоит из аденозина (обозначим его буквой А) и трех остатков фосфорной кислоты (Р). Следовательно, схематично АТФ будет выглядеть так: A—Р—Р—Р. Если АТФ при разрушении фосфатных групп теряет один фосфат, то получается другое вещество — аденозиндифосфорная кислота (АДФ) и выделяется энергия. Напротив, чтобы снова присоединить фосфат к АДФ, требуется затратить энергию.
Любопытно, что взаимоотношения между АТФ и АДФ напоминают заколдованный круг. Чем выше концентрация АДФ в клетке, тем выше скорость синтеза АТФ и дыхания тканей. Но уровень АДФ, в свою очередь, зависит от скорости распада АТФ. Вот и получается, что усиление одного процесса неминуемо влечет активизацию другого. Саморегуляция биологической системы, выработанная природой, позволяет управлять, контролировать один из механизмов энергетики живого организма.
Учитывая огромное и многообразное значение АТФ, ей присвоили разные «прозвища»: «банк» энергии, «аккумулятор на колесах» и др. Сегодня процесс образования энергии представляется следующим образом. В клетках находятся мельчайшие образования митохондрии (рис. 2), которые образно называют энергетическими станциями. В митохондриях насчитывается свыше 50 ферментов, участвующих в разрушении и синтезе различных химических соединений. В клетке может быть до 2000 митохондрий. На их наружных и внутренних поверхностях располагаются тысячи мельчайших частиц. Они содержат эффективные биохимические системы, обеспечивающие синтез веществ, богатых энергией. Подсчитано, что энергия их на единицу массы мышц равна энергии двигателей реактивного самолета при вертикальном подъеме, а КПД равен примерно 80%, что намного выше КПД многих реактивных двигателей. Примерно половина энергии, образующейся в митохондриях, превращается в тепло, оставшаяся часть консервируется в виде химических связей молекул АТФ. Но, увы, запасы АТФ в клетке относительно невелики, поэтому мышца сможет работать только в том случае, если они непрерывно пополняются.
И здесь опять сделаем экскурс в историю. В 1930 году советский биохимик В. А. Энгельгардт установил, что в красных кровяных тельцах крови — эритроцитах — АТФ может заново синтезироваться. То же наблюдается и в мышечной клетке. Наряду с распадом АТФ происходит обратное ее восстановление (резинтез), биологический смысл которого огромен. Если одновременно с распадом не протекал бы обратный синтез источников энергии, то энергетические кладовые быстро бы истощались. В этом отношении АТФ сравнивают с аккумулятором, который не только разряжается, но и заряжается «на ходу».