Журнал «Компьютерра» №46 от 15 декабря 2005 года - Журнал Компьютерра (читаем книги онлайн бесплатно txt) 📗
Тем не менее за прошедшие с тех пор шестнадцать лет по этой теме было опубликовано три с лишним тысячи научных статей, регулярно проводятся научные конференции. Холодным синтезом продолжают заниматься небольшие научные группы во многих известных институтах. Более сотни групп в разное время заявляли, что им, наконец, удалось реализовать холодный синтез в тех или иных экспериментальных устройствах. Однако большинство этих результатов воспроизводится плохо и, как правило, отсутствует согласие между измеренным выделением тепла, зарегистрированным излучением и наблюдаемым количеством продуктов реакции синтеза. Такие измерения представляют собой очень непростую задачу. Дело, как правило, осложняется отсутствием хорошей теории, и нередко экспериментальный поиск ведется почти вслепую. В общем, какой-то холодный синтез, по всей видимости, возможен, но ученые пока далеки от понимания этих процессов, не говоря уже о возможности производства с их помощью дешевой энергии.
И все же в ряде экспериментов - например, при разгоне ядер дейтерия сильными электрическими полями, возникающими при сжатии пьезокристаллов (как в зажигалках), - удалось получить понятные и хорошо воспроизводимые результаты. К сожалению, во всех успешных случаях затрачивается гораздо больше энергии, чем выделяется в результате синтеза ядер. Однако эти устройства можно использовать в качестве удобных генераторов нейтронов.
Финансирование работ по холодному синтезу пока осуществляется обычным путем. Но специальная комиссия Министерства энергетики США время от времени изучает состояние дел на предмет выделения дополнительных средств для развития этого направления. Мнения эксперты высказывают разные, но пока решения комиссии отрицательны. Злые языки винят в этом мощное термоядерное лобби, привыкшее к миллиардным вливаниям.
Рэнделл Миллз (Randell Mills) человек, несомненно, умный, широко образованный и обладающий бешеной энергией. Миллз родился в 1957 году в штате Пенсильвания и в 1982-м блестяще окончил колледж Франклина и Маршалла, получив степень бакалавра по химии. Продолжив образование, он спустя четыре года получил степень доктора медицины в Гарвардской школе медицины. Еще год Миллз проработал аспирантом в Массачусетском технологическом институте, специализируясь на электротехнике, и затем, наконец, приступил к самостоятельным исследованиям.
Кипучая деятельность Миллза воистину не знает границ. Он соучредитель и генеральный директор нескольких компаний, автор почти сотни статей в солидных рецензируемых научных журналах и десятков докладов на крупных научных конференциях. Он владеет десятком патентов. Причем предмет этих патентов простирается от способов терапии рака и химических методов доставки лекарств до получения изображений с помощью ядерного магнитного резонанса и технологий искусственного интеллекта.
Достижения доктора Миллза (те, что по химии и медицине) отмечены девятью престижными наградами научных сообществ. У Миллза есть сторонники и последователи среди инженеров и ученых, которые высоко ценят его деятельность. Однако многие физики считают идеи Миллза образчиком лженауки. И для этого есть очень веские основания. Но мы не будем здесь навешивать ярлыки, тем более что все ярлыки плохо пахнут, а попытаемся во всем разобраться.
Главной идеей доктора Миллза, на которой он сконцентрировался в последние пятнадцать лет и которая недавно вызвала повышенный интерес, является гипотеза о существовании гидрино (так Миллз называет «сжатое» состояние атома водорода, в котором электрон находится ближе к ядру, чем в обычном атоме). Электрон в гидрино обладает меньшей энергией, чем электрон в атоме водорода, находящемся в основном устойчивом состоянии с минимальной, с точки зрения квантовой теории, энергией. И эту разницу в энергиях, по мнению Миллза, можно добыть, превращая обычный водород в гидрино с помощью специальных катализаторов. Причем от одного атома водорода в этом процессе можно получить примерно в тысячу раз больше энергии, чем при сжигании. Это меньше, чем при ядерной реакции синтеза, но все равно сулит энергетическое изобилие и массу других выгод. Что и говорить, очень заманчиво.
Гипотеза существования гидрино возникла у Миллза еще в конце восьмидесятых и потребовалась ему для объяснения необычных результатов некоторых химических экспериментов и экспериментов с низкотемпературной плазмой. Судя по публикациям, Миллз еще тогда наблюдал аномальное выделение тепла и, возможно, ультрафиолетовое свечение, признак наличия процессов с большой энергией. Их он стал объяснять превращением водорода, содержащегося в смеси, в гидрино. Эксперименты и объяснения кому-то показались убедительными, и хотя знакомые с квантовой теорией специалисты, включая нескольких нобелевских лауреатов, сочли взгляды Миллза несостоятельными, ему удалось найти инвесторов, по слухам, среди энергетических корпораций. Инвесторы выделили под эту идею несколько десятков миллионов долларов, что позволило Миллзу организовать в 1991 году компанию Black Light Power специально для исследования и коммерциализации гидринных технологий. И до настоящего времени ему удается находить деньги для продолжения этих работ.
Поначалу научные работы Миллза о гидрино и сопутствующих технологиях были скупы и касались в основном различных экспериментов. Но в 1999 году он издает книгу «Великая объединенная теория классической квантовой механики» , и с тех пор, а особенно после 2002 года, поток его статей в солидных научных журналах только ширится. А поскольку подобные статьи проходят тщательный контроль рецензентов, можно считать, что проверка гипотезы Миллза вошла в нормальное научное русло. И просто отмахнуться от нее, как от очевидной глупости, уже нельзя.
Что же собой представляет классическая квантовая теория Миллза и на что она претендует? Претензий у теории много. От описания элементарных частиц до описания вселенной. Что же касается модели атома Миллза, то она является некоей смесью квантовых постулатов и классической электродинамики. Модель эта детерминированная (как классическая механика) в пику расплывчатым и малопонятным вероятностным предсказаниям обычной квантовой теории. Например, свободный электрон, согласно Миллзу, это бесконечно тонкий вращающийся диск, который в кулоновском поле атомного ядра превращается в орбисферу с радиусом, равным радиусу Бора. Есть орбисферы и с бо’льшими радиусами, которые совпадают с известными в квантовой теории возбужденными состояниями атома. Однако помимо них, утверждает Миллз, имеются орбисферы с меньшими радиусами, равными радиусу Бора, деленному на целые числа вплоть до 137. Меньше радиусов быть не может, поскольку для них скорость электрона превысит скорость света. Атомы водорода с дробными к радиусу Бора орбитами электрона и есть гидрино. Все гидринные состояния устойчивы, в отличие от обычных возбужденных состояний атома, из которых он возвращается в основное состояние - на орбиту с Боровским радиусом, излучая фотон. Поэтому гидрино трудно наблюдать. Зато на гидринную орбиту электрон может «упасть» в результате столкновения с атомом катализатора, передав ему разницу в энергиях состояний.
Почему бы и нет? Многим великим физикам, включая Эйнштейна, не нравились вероятностные предсказания квантовой теории. Многие известные ученые в прошлом веке пытались построить детерминированную теорию атома. У них не вышло. Вдруг, наконец, это вышло у Миллза? Более того, когда квантовая теория еще только становилась на ноги, классики умудрялись с помощью довольно смутных рассуждений выводить из классической электродинамики те же формулы для излучения атома, что и в квантовой теории. Их можно найти в первых классических учебниках тридцатых годов по квантовой механике.