Online-knigi.org
online-knigi.org » Книги » Компьютеры и интернет » Прочая компьютерная литература » КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - Большаков Владимир Павлович (бесплатная регистрация книга .txt) 📗

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - Большаков Владимир Павлович (бесплатная регистрация книга .txt) 📗

Тут можно читать бесплатно КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - Большаков Владимир Павлович (бесплатная регистрация книга .txt) 📗. Жанр: Прочая компьютерная литература / Программирование. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

На рис. 12.47 показаны эскизы для создания цилиндра, конуса и сферы при использовании команды Операция вращения.

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - i_590.png

Для создания тел вращения можно применять и другие формообразующие операции. На рис. 12.48 показаны эскизы для создания цилиндра при использовании команд Выдавливание, По сечениям, Кинематическая.

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - i_591.png

12.6.1. Особенности использования операции вращения

Очевидно, что Операция вращения наиболее удобна для создания тел вращения. Эскиз для создания элемента вращения должен подчиняться следующим основным правилам:

□ ось в эскизе должна быть одна и изображена отрезком со стилем Осевая;

□ в эскизе может быть один или несколько контуров;

□ все контуры должны лежать по одну сторону от оси вращения;

□ ни один из контуров не должен пересекать ось вращения;

□ если контур один, он может быть разомкнутым или замкнутым;

□ если контуров несколько, все они должны быть замкнуты.

Остановимся на характеристиках элемента вращения. Если контур в эскизе не замкнут, возможны два варианта построения элемента вращения: Сфероид и Тороид.

При построении сфероида концы контура проецируются на ось вращения. Построение элемента производится с учетом этих проекций. В результате получается сплошной элемент.

При построении тороида вращается только контур в эскизе. К получившейся поверхности добавляется слой материала. В результате получается тонкостенный элемент — элемент с отверстием вдоль оси вращения. Параметры тонкой стенки могут быть заданы.

При создании элемента вращения можно задать направление и угол вращения эскиза.

12.6.2. Построение моделей по параметрам сечений

Построение 3D-моделей простых тел вращения по их параметрам не является для большинства очень увлекательной задачей из-за ее простоты. Рассмотрим примеры.

Пример 12.10

Условие. Построить модель сферы, у которой сечение, отстоящее на 12 мм от центра, имеет радиус, равный 8 мм.

Решение. На рис. 12.49, а показаны вспомогательные построения, которые необходимо выполнить в эскизе для построения дуги указанного знаком «*» радиуса, а также модель сферы с заданным сечением.

Пример 12.11

Условие. Построить модель цилиндра высотой 25 мм, описанного вокруг правильной пятиугольной призмы. Основание призмы описано вокруг окружности с радиусом 10 мм.

Решение. На рис. 12.49, б показан цилиндр и пятиугольник, который первоначально строится в эскизе, после чего вокруг него описывается окружность. Очевидно, что далее достаточно выдавить эскиз на заданное расстояние.

Пример 12.12

Условие. Построить модель конуса, у которого радиус основания равен 10 мм, а сечение, проходящее через вершину конуса и хорду длиной 15 мм, имеет боковую сторону длиной 20 мм.

Решение. На рис. 12.49, в показан эскиз, в котором первоначально строится сечение по заданным параметрам. Поворот сечения вокруг хорды позволяет найти положение вершины конуса. Далее изображается отрезок (образующая), вращение которого вокруг оси позволяет создать модель конуса. Показанный на рис. 12.49, в конус содержит заданное в условии сечение.

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - i_592.png

12.6.3. Определение параметров касающихся геометрических тел

В последующих примерах определим основные параметры касающихся геометрических тел, которые позволят, используя рассмотренные ранее приемы, построить соответствующие модели.

Пример 12.13

Условие. Определить высоту тетраэдра, описанного вокруг цилиндра с диаметром и высотой 10 мм. Для построений использовать проекции вспомогательного тетраэдра.

Решение представлено на рис. 12.50.

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - i_593.png

1. Используя команду Многоугольник, опишите вокруг окружности правильный треугольник.

2. Из вершины треугольника проведите отрезок 12. Точка 2 должна быть построена на уровне верхней грани цилиндра.

3. Через точку 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.

4. Постройте вспомогательный отрезок 45. Точка 5 должна быть расположена на продолжении горизонтальной оси, проходящей через центр окружности.

5. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.

Пример 12.14

Условие. Определить высоту тетраэдра, описанного вокруг правильной шестиугольной призмы. Расстояние между противоположными гранями призмы — 10 мм. Для построений использовать проекции вспомогательного тетраэдра (рис. 12.51, а).

Решение приведено на рис. 12.51, б.

1. Через точки 1 и 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей. Постройте треугольник, описанный вокруг горизонтальной проекции призмы.

2. Из вершины треугольника проведите отрезок 12. Точка 2 должна быть построена на уровне верхней грани призмы.

КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - i_594.png

3. Через точку 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.

4. Постройте вспомогательный отрезок 45. Точка 5 должна быть расположена на продолжении горизонтальной оси, проходящей через центр шестиугольника.

5. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.

Пример 12.15

Условие. Определить высоту тетраэдра, описанного вокруг куба с ребром, равным 10 мм. Для построений использовать проекции вспомогательного тетраэдра.

Решение представлено на рис. 12.51, в.

1. Через точки 1 и 2 проведите отрезки 34 и 35, параллельные ребрам вспомогательного тетраэдра.

2. Используя команду Окружность, касательная к 3 кривым, в треугольник 345 впишите вспомогательную окружность.

3. Через центр окружности проведите вертикальный отрезок.

4. Из вершины треугольника проведите отрезок 36. Точка 6 должна быть построена на уровне верхней грани куба.

5. Через точку 6 проведите отрезок 78, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.

6. Постройте вспомогательный отрезок 89. Точка 9 должна быть расположена на продолжении горизонтальной оси, проходящей через центр окружности.

7. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.

Пример 12.16

Условие. Дан тетраэдр, у которого грань вписана в окружность диаметром 40 мм. Вписать в тетраэдр геометрические тела высотой 15 мм. Определить параметры оснований вписанных геометрических тел:

□ цилиндра;

□ усеченной шестиугольной призмы;

□ четырехугольной призмы.

Решение. На рис. 12.52 показаны прямоугольные проекции пирамиды и вписанных в пирамиду заданных тел. Знаком «*» отмечены искомые величины, определенные в результате построений и измерений. На первом этапе строятся проекции треугольника, принадлежащего поверхности пирамиды, которого касаются верхние грани вписанных тел. Далее в горизонтальную проекцию построенного треугольника вписывается верхняя грань соответствующего тела. На рис. 12.52, в показан вспомогательный квадрат со стороной 20 мм, с помощью которого строится горизонтальная проекция вписанной призмы.

Перейти на страницу:

Большаков Владимир Павлович читать все книги автора по порядку

Большаков Владимир Павлович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия отзывы

Отзывы читателей о книге КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия, автор: Большаков Владимир Павлович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*