Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги бесплатно TXT) 📗
Зависимость эффективности от высоты подрыва над поверхностью астероида приведена в табл. 10.3, где приняты следующие обозначения: H — высота над поверхностью астероида, Ra — радиус астероида, f — эффективность.
Как следует из табл. 10.3, при H/Ra = 0,1 потребуется увеличение мощности заряда уже вдвое по сравнению с контактным взрывом.
При взрыве ядерного заряда на поверхности астероида должен произойти мощный выброс грунта. По оценкам [Симоненко и др., 1994], контактный взрыв заряда мощностью в 1 Мт вызывает выброс 1 Мт грунта со средней скоростью 100 м/с. Поэтому предполагается, что с помощью ядерного взрыва можно осуществлять изменение траектории движения астероида. Например, взрыв заряда мощностью 10 Мт на поверхности астероида размером 500 м при его перехвате в районе орбиты Марса обеспечит изменение траектории движения астероида, отклонив его на 10 тыс. км к моменту встречи с Землей.
Согласно работе [Симоненко и др., 1994], возможно значительное повышение эффективности использования глубинных ядерных взрывов. Так, если при контактном взрыве на поверхности астероида только 10–13 % его энергии идет на разрушение, то при заглублении заряда в грунт эффективность разрушения составит 70–80 %. Предполагается, что заряд мощностью 20 Мт обеспечивает разрушение астероидов диаметром до 1200–1500 м. Однако реализация заглубленного взрыва потребует не только разработки заряда специальной оригинальной конструкции, но и встречи астероида и заряда с взаимной ориентацией и скоростью, обеспечивающей заглубление заряда в тело астероида.
Оценивая представленные предложения с точки зрения возможностей средств доставки (см. раздел 10.6), можно сделать вывод о том, что использование ядерного заряда имеет весьма ограниченное применение.
Так, оценивая долю заряда в 50 % от полной массы КА, из рис. 10.10 можно видеть, что доля досягаемых астероидов весьма невелика.
Далее, так как полная масса КА не превышает 2000 кг, то из табл. 10.2 видно, что мощность заряда ограничивается величиной порядка нескольких мегатонн. В свою очередь, мощность такого заряда ограничит диаметр разрушаемого астероида немногими сотнями метров лишь в том случае, когда условия подрыва будут оптимальны (поверхностный или заглубленный подрыв). Последнее же потребует реализации специальной системы управления космическим аппаратом, которая должна будет обеспечить посадку ядерного устройства на поверхность астероида (а также дальнейшие операции).
По-видимому, перечисленные соображения составляют лишь малую часть проблем, сопровождающих применение ядерного заряда. К остальным следует отнести проблематичность достаточно точного обеспечения заданного результата воздействия, организационно-техническую сложность работы с ядерным зарядом, специфику его обслуживания на стадии подготовки к применению, новизну задачи обеспечения его исправности при длительном пребывании в непривычных для него условиях космического пространства и т. п.
Наконец, следует вспомнить и о том, что запрет на применение ядерных зарядов в космосе создает политические, экологические и моральные препятствия к их использованию (см. главу 11). По совокупности приведенного перечня проблем (разумеется, далеко не полного) использование ядерных взрывов представляется весьма сложным и плохо прогнозируемым способом противодействия угрожающему астероиду. Поэтому приходится признать, что мы в настоящее время находимся лишь в самом начале исследований возможного использования ядерных взрывов [Симоненко и др., 2008].
10.9.2. Кинетическое воздействие на угрожающий объект. Обратимся к другому популярному варианту противодействия астероидно-кометной опасности — столкновение специального КА с опасным объектом для изменения орбиты угрожающего тела. В литературе обсуждается, например, проект «Дон Кихот» — первая космическая миссия, имеющая целью экспериментальное изменение орбиты астероида подобным способом.
Используя оценочные формулы разделов 10.3 и 10.5, нетрудно получить оценку приращения скорости астероида массой Mа при ударе по нему космическим аппаратом с малой массой mка. В разделе 10.5 была получена формула, дающая приращение скорости астероида dV при ударе:
где Vотн — скорость ударяющего тела относительно астероида, а kуд — поправочный коэффициент, учитывающий побочные эффекты при ударе КА по астероиду с большой скоростью.
В разделе 10.3 были получены выражения, дающие изменения координат астероида по бинормали z, радиус-вектору r и вдоль орбиты l, возникающие при появлении импульсов скорости dVS, dVT, dVW, приложенных по осям орбитальной системы координат S, T, W. Изменения координат отнесены к гелиоцентрическому радиус-вектору астероида r0 и в сводном виде представлены в табл. 10.4.
Почти все изменения координат — периодические, за исключением ухода dl/r0 вдоль орбиты астероида при условии, что приращение скорости произведено по оси Т. В этом случае изменение координаты dl/r0 имеет вековой характер и линейно нарастает с ростом числа витков орбиты астероида Nв.
Все приращения скорости, создаваемые по осям S, T, W, отнесены к гелиоцентрической скорости астероида Vа.
Положим, что удар по астероиду производится по осям S, T, W. Тогда, подставив в выражения, описывающие приращения относительных координат, формулы, соответствующие приращениям скорости астероида, можно получить удобные выражения для оценок итоговых максимальных изменений относительных координат, возникающих после удара:
Здесь максимальные значения периодических изменений координат даны в смысле, рассмотренном в разделе 10.3. Максимальное изменение координаты dzmax/r0 дается для удара, направленного по оси W. Максимальные изменения координат drmax/r0 и dlmax/r0 приведены лишь для случая удара, направленного по оси T, как наиболее эффективные. При этом для координаты dlmax/r0 указано значение на момент времени, соответствующий завершению витка орбиты после удара.
Рассмотрим численный пример, предполагая коррекцию орбиты астероида Апофис, выполняемую ударом космического аппарата в период до 2029 г. Масса Апофиса оценивается величиной Mа ∼ 5, 0 1010 кг, а его гелиоцентрическую скорость можно принять равной Vа ∼ 30 км/с. Тогда, взяв среднее значение коэффициента kуд = 3 и предполагая, что КА массой mка = 103 кг ударяет астероид с относительной скоростью Vотн∼ 10 км/c вдоль оси T, можно получить оценку максимального изменения координат астероида по радиус-вектору, равную dr/r0 ∼ 2 10-8. Полагая r0 ∼ 1,5 108 км, нетрудно видеть, что максимальное смещение астероида составит ∼ 3 км. Следовательно, оказывается, что удар космического аппарата с разумной массой по астероиду в принципе может вывести Апофис из зоны резонансного возврата и устранить опасность встречи Апофиса с Землей в 2036 г.
Так как смещение по радиус-вектору — периодическое, то для получения максимального увода астероида необходимо выполнять удар по астероиду с упреждением относительно момента сближения Апофиса с Землей. В разделе 10.3 показано, что упреждение должно составлять примерно половину витка орбиты астероида. Отсюда следует, что выбор момента старта КА-ударника с Земли для перелета к Апофису должен быть подчинен этому условию. Поэтому обычные методики оптимизации выбора времени старта для получения максимальной массы доставляемой полезной нагрузки в данном случае могут быть неприменимы. Как следствие, масса КА может не достигать максимальных значений, возможных для выбранного носителя.