Очерки о Вселенной - Воронцов-Вельяминов Борис Александрович (читать полную версию книги .TXT) 📗
Еще не все на диаграмме Г - Р ясно; требуются дополнительные наблюдения и расчеты. В частности, неуверенность есть в более поздних путях эволюции звезд. Предполагают, что, исчерпав весь гелий, звезда быстро сжимается - в этой фазе эволюции звезду трудно найти. Она не имеет уже источников энергии и превращается в крайне плотный белый карлик. Белый карлик расходует так мало энергии, что в этом состоянии может прожить много миллиардов лет и является, как шутят ученые, «горячим трупом». Неясно, может ли звезда уплотниться больше, чем белый карлик. Некоторые допускают, что он может превратиться в нейтронную звезду.
Но судьба превратиться в белого карлика возможна лишь для звезд с массой, меньшей чем 1,4 массы Солнца. При большей массе белый карлик неустойчив и, может быть, взрывается, как сверхновая звезда, что было бы концом более массивных звезд. А может быть, они неоднократно взрываются, как новые звезды, и, сбрасывая этим излишек массы, тоже превращаются в белые карлики.
Заметим, что мы не знаем пока ни одной «потухшей» звезды. Самые холодные из известных, инфракрасные звезды, не могут быть угасающими звездами. По всем признакам они еще будут разогреваться.
Из всего сказанного нами выше уже ясны современные представления о возникновении галактик. Вероятно, раньше Метагалактика являлась огромнейшим уплотненным облаком водорода, в котором одновременно шел распад на меньшие облака и их взаимное удаление со скоростью, убывающей по мере удаления. Неоднородности в облаках вели к гравитационной конденсации газа в звезды внутри сферических объемов. Так возникали эллиптические галактики. Их звезды теперь стары и бедны металлами. При наличии более быстрого вращения газовая масса, обогащаемая тяжелыми элементами, поступающими из старых звезд, сплющивалась. Возникали сжатые галактики с их диском, в котором рождались звезды более молодые и более богатые металлами. Вероятно, не без участия магнитного поля газ в диске концентрировался вдоль спиральных ветвей, выходящих из ядра, где процесс звездообразования шел наиболее интенсивно и где он продолжается и сейчас тем заметнее, чем там больше осталось газа. Таковы спирали «поздних типов» и неправильные галактики. В последних, как в Большом Магеллановом Облаке, есть молодые шаровые скопления, у которых диаграмма Г - Р более похожа на диаграммы рассеянных скоплений. Старые рассеянные скопления нашей Галактики с диаграммами, похожими на диаграммы старых шаровых скоплений, находятся далеко от плоскости Галактики. Там они меньше разрушались под действием притяжения проходящих звезд и, имея сами много звезд, были более устойчивы. Их звезды, расходясь, пополняют звездное население диска, а выбросы газов звездами дают материал для все нового, но уже замирающего звездообразования. Многое в картине развития миров нам еще не ясно.
Все сказанное рисует нам теперь, хотя и без подробностей, картину образования миров, своеобразный круговорот, в котором участвуют и газы, и метеориты, и звезды; одни миры в бесконечной Вселенной зарождаются, другие гибнут, давая материал для нового цикла грандиозных изменений в природе.
При этом развитие и круговорот, конечно, не представляют собой бесконечное повторение пройденного. В соответствии с ленинским учением мы можем представлять себе это вечное развитие и круговорот материи подобным движению по спирали. Но это развитие, как мы должны также помнить, происходит диалектически, в борьбе противоречий, нередко скачками.
Человеческое знание за срок, ничтожно короткий в сравнении с циклами развития мировых тел, проникло в тайны их строения и развития. Мы можем сказать словами поэта:
«Наши очи малы,
Но безбрежность мира
Меряют собою
И в себе вмещают...»
(Н. Щербина)
Глва 12. История Земли и планет
Космогония по Лапласу
Рождение Земли... Дела давно минувших дней и не найти преданий старины глубокой...
Некому рассказать о них, если не считаться с теми легендами о сотворении мира, которые складывали в древности. Прошлое земной коры хранит в себе она сама, и мы научились расспрашивать ее об этом. Радиоактивные породы в ней разоблачили нам свой возраст - время, протекшее с момента их затвердевания, но что было раньше?
Знать прошлое Земли практически важно для понимания строения и изменения ее недр, а последнее важно при поисках полезных ископаемых и для возможности предвидеть землетрясения.
При установлении истории развития многолетних организмов мы можем сопоставлять разные экземпляры их. Дубы и дубочки, сгнившие деревья говорят нам о жизненном пути вековых деревьев, из которых ни одно не завершает его целиком на наших глазах. Можно сравнивать друг с другом планеты в их современном состоянии и пытаться судить по ним об эволюции Земли. Но нашу Солнечную систему нам сравнивать не с чем, ибо других, подобных ей, мы не знаем, хотя и уверены, что они должны быть. Солнечная система известна нам только в одном экземпляре.
Философ Кант в середине XVIII века четко высказал идею об эволюции мировых тел и, опередив ученых-астрономов, набросал мыслимую картину возникновения Солнечной системы из обширной туманности (Кант - немецкий философ-идеалист - в этой ранней своей работе выступает с прогрессивной теорией)). Он рисовал ее в соответствии с тем, что тогда было известно науке о строении Солнечной системы, планет и туманностей, о законах природы.
Кант смело отверг идею творения и нарисовал развитие миров происходящим в силу естественных законов природы. «Первая брешь в этом окаменелом воззрении на природу была пробита не естествоиспытателем, а философом. В 1755 г. появилась «Всеобщая естественная история и теория неба» Канта. Вопрос о первом толчке был устранен; земля и вся Солнечная система предстали как нечто ставшее во времени». (Ф. Энгельс, Диалектика природы, Госполитиздат, 1948, стр. 10.)
Независимо от Канта математик, механик и астроном Лаплас разработал подобную же картину происхождения Солнечной системы. Его рассуждения были строже и научнее. Мировоззренческое значение этих работ Канта и Лапласа было очень велико. Современники были потрясены величественной картиной мироздания, развернутой Лапласом.
Эти работы, а также разработка идеи эволюции, в частности в области геологии, великим русским ученым М. В. Ломоносовым способствовали тому, что позднее ученые и других областей науки убедились в существовании развития в природе. Понятие об эволюции постепенно вошло и в другие науки,
Лаплас, как и Кант, правильно подметил основные, известные в то время характерные черты Солнечной системы, которые должна объяснить теория их происхождения. Эти черты следующие:
1. Подавляющая часть массы системы (749/760) сосредоточена в Солнце.
2. Планеты обращаются по почти круговым орбитам и почти в одной и той же плоскости.
3. Все планеты обращаются в одну и ту же сторону; в ту же сторону обращаются вокруг планет их спутники и сами планеты вращаются вокруг своей оси.
Древним грекам и создателям библии начальный мир представлялся хаотическим облаком мелких частиц, о котором древнеримский поэт Овидий сказал:
«Прежде земля и вода и небесные чудные своды,
Вся отовсюду природа была одинакова видом.
И называлась хаосом, - как дикая грубая масса...»
Но во времена Лапласа уже отдавали себе отчет в том, что из совершенно хаотического движения частиц правильное вращение возникнуть не может, вопреки предположению Канта. Поэтоглу Лаплас начинает рассмотрение развития Солнечной системы с гигантской газовой туманности, уже вращающейся вокруг своей оси, хотя и очень медленно.
Она вращалась как твердое тело и в центре имела сгусток - «зародыш» будущего Солнца. Притяжение к центру частиц туманности, простиравшейся сначала за орбиту наиболее далекой из планет, заставляло ее сжиматься. Уменьшение размеров по законам механики должно было вести к ускорению вращения. Наступал момент, когда на экваторе туманности, где линейные скорости частиц при вращении больше всего, центробежная сила уравнивалась с тяготением к центру. В этот момент вдоль экватора туманности отслаивалось газовое кольцо, вращавшееся в ту же сторону, в какую вращалась туманность. Продолжавшееся сжатие и ускорение вращения приводили к отслоению кольца за кольцом. В силу неизбежной неоднородности каждого кольца какой-либо сгусток в нем притягивал к себе остальное вещество кольца, и образовывался один газовый клубок - будущая планета. Наружные части кольца, а впоследствии сгустка, при обращении забегали как бы вперед и приводили его во вращение вокруг оси в ту же сторону, куда двигался зародыш планеты.