Загадки для знатоков. История открытия и исследования пульсаров - Амнуэль Павел (Песах) Рафаэлович (читать книги онлайн полные версии TXT) 📗
Теперь, разобравшись в том, какую роль сыграли белые карлики, вернемся к нейтронным звездам.
Снова сделаем отступление в прошлое — в XIX век. В век торжества ньютоновской теории тяготения. Помните, как Леверье «на кончике пера» открыл Нептун? Нужно ли было более надежное доказательство ньютоновской теории? Однако… Движения планет все же чуть-чуть отличались от рассчитанных по законам Ньютона и Кеплера. Особенно вызывающим было поведение Меркурия. Положение его перигелия (ближайшей к Солнцу точки орбиты) отклонялось от предвычисленного на 43 угловые секунды в столетие. Делались, конечно, попытки объяснить этот феномен. Появилось множество гипотез, из которых до нас дошли единицы, да и то для того чтобы украсить кунсткамеру научных ошибок. Сначала ученые вводили в Солнечную систему невидимые массы, отклонявшие планеты с их курсов. Но это не помогло. И тогда были сделаны отчаянные попытки спасти закон тяготения Ньютона, модернизируя его формулу.
Кроме таких, чисто эмпирических трудностей, были сложности, о которых физики знали еще во времена Ньютона, но до поры скромно умалчивали. Кого, например, могла в конце XIX века удовлетворить идея о том, что тяготение распространяется мгновенно? А если не мгновенно, то с какой скоростью? И наконец, без ответа оставался главный вопрос: почему тела притягивают друг друга? В чем причина тяготения?
Так что когда Эйнштейн создал частную теорию относительности и занялся теорией тяготения, это не было прихотью гения. Вопрос назрел. Со времен Ньютона физики знали, что вес тела пропорционален его массе. Знали, что существуют два типа массы — тяготеющая и инертная. Тяготеющая масса — это масса, которую нужно подставить в закон всемирного тяготения, чтобы рассчитать силу тяжести. Инертная масса — это масса, которую нужно подставить во второй закон Ньютона, чтобы рассчитать ускорение движения тела под действием силы. Физики знали, что эти массы численно равны друг другу. Эйнштейн сделал шаг, который нам сейчас может показаться маленьким, но произвел переворот в умах. Помните, что сказал Н. Армстронг, ступив на поверхность Луны? «Маленький шаг человека — большой шаг всего человечества». Вот эти-то «маленькие» шаги, преобразующие мир, сделать труднее всего. Эйнштейн был первым, кто твердо сказал: тяготеющая и инертная массы не просто численно равны, они одно и то же. И это утверждение, названное принципом эквивалентности, послужило опорой для создания самой совершенной физической теории XX века: общей теории относительности.
Эйнштейн доказал, что перигелий Меркурия должен перемещаться именно на 43 угловые секунды в столетие. Кроме того, из общей теории относительности следовало, что луч света, который прежде считался движущимся только прямолинейно (в пустоте), должен отклоняться от своей прямой траектории в поде тяжести. Ведь фотон, квант света — материальная частица, он также должен быть подчинен закону тяготения. Никто не знал, чему равна масса фотона (Эйнштейн нашел, что фотон существует только в движении, он не может стоять на месте, его масса покоя равна нулю), но физики знали, как измерить энергию фотона. А из принципа эквивалентности следовало, что и энергия тела эквивалентна вполне определенной массе — вспомните знаменитую формулу Е = Мс2! И значит, луч света должен, как обыкновенный камень, двигаться в поле тяжести по кривой линии, которую можно рассчитать. Это следствие из теории тяготения, в отличие от первого, предстояло еще доказать на опыте. И третье следствие тоже. Заключалось третье следствие вот в чем. Если подбросить вверх камень, то он будет лететь все медленнее, его кинетическая энергия будет расходоваться на преодоление пут тяготения. В конце концов она истратится вся, камень на мгновение остановится и начнет падать. Луч света, испущенный вверх, против поля тяжести, тоже должен разорвать путы тяготения, тоже должен, удаляясь от тяготеющего тела, терять свою энергию. Но тормозить движение фотон не может — ведь скорость света есть величина постоянная. Фотон в отличие от камня теряет энергию иначе — он «краснеет». Согласно теории квантов (тоже созданной Эйнштейном в 1905 году), энергия фотона пропорциональна его частоте. Меньше энергия — меньше частота. Частота фотона — это его цвет. Значит, цвет луча света меняется. Из голубого луч становится красным, причем тем больше, чем более сильное поле тяжести ему приходится преодолевать. Этот эффект называется гравитационным красным смещением.
В 1919 году Эддингтон, наблюдая солнечное затмение, обнаружил, что звезды около затемненного Луной края солнечного диска сместились со своих мест. Это означало, что луч света от далекой звезды, проходя по пути к Земле рядом с Солнцем, отклонялся от прямолинейной траектории. Измеренный эффект смещения практически точно совпал с предсказанным.
А пять лет спустя тот же Эддингтон объявил о том, что спектральные линии элементов в спектрах белых карликов должны быть смещены в красную сторону.
Ведь белые карлики — самые компактные из звезд. Поле тяжести на их поверхности в миллион раз больше, чем на поверхности Земли! Значит, и красное смещение света, испущенного белым карликом, должно быть самым большим из возможных. Эддингтон вычислил, на сколько именно должны смещаться в красную сторону спектральные линии. В том же 1924 году Адамс наблюдал спектры белого карлика Сириус В и обнаружил предсказанное красное смещение — именно такое, какое следовало из теории.
Размер белого карлика 10 тысяч километров, и в нем уже проявляются эффекты общей теории относительности. Оказывается, без них нельзя точно рассчитать ни предельную массу белого карлика, ни смещение линий в его спектре. Что же тогда говорить о нейтронной звезде, размер которой, если верить предсказаниям Цвикки, еще в сотни раз меньше! Ведь и поле тяжести на поверхности нейтронной звезды должно быть в сотни раз больше! Значит, и эффекты общей теории относительности должны играть весьма существенную, а может, и вовсе определяющую роль.
Посмотрим, так ли это. Чем ближе скорость движения тела к скорости света, тем больше влияние эффектов теории относительности. Так и здесь. Характеристикой величины поля тяжести может служить вторая космическая скорость (скорость убегания). Чем больше сила тяжести, тем большую скорость должно иметь тело, чтобы улететь в космос. Чтобы навсегда покинуть Землю, нужно разогнаться до 11 км/с. Чтобы улететь с поверхности Солнца, нужно развить скорость 600 км/с. Чтобы разорвать путы тяжести белого карлика, нужна скорость 5 тысяч км/с. Все больше и больше! Заметьте, что в белом карлике эффекты общей теории относительности уже ощутимы. А чтобы покинуть нейтронную звезду, нужно разогнаться до скорости 100 тысяч км/с! Всего втрое меньше скорости света. Если бы размер нейтронной звезды был втрое меньше, то скорость убегания с ее поверхности сравнялась бы со скоростью света. Улететь с поверхности нейтронной звезды стало бы просто невозможно…
Впрочем, последнее рассуждение не имеет отношения к нейтронным звездам. Нейтронная звезда в принципе не может иметь таких маленьких размеров — позднее мы еще вернемся к этому. Но само рассуждение безупречно и пришло в голову английскому физику Дж. Мичеллу еще в XVIII веке. Спустя несколько лет после Мичелла о том же писал и великий Лаплас. Конечно, они и понятия не имели о теории относительности. Это была прекрасная догадка, жемчужное зерно в куче ошибочных представлений того времени. Лаплас писал, что если свет распространяется не бесконечно быстро, то может найтись небесное тело, с поверхности которого свет не сможет улететь, потому что скорость убегания окажется больше световой. Такое тело невозможно обнаружить, потому что оно в принципе ничего не излучает.
Такими телами являются, например, гипотетические «адские звезды». Размеры у них должны быть меньше размеров атома, и это при массе, равной солнечной! Если бы такие звезды могли существовать, то скорость убегания с их поверхности превышала бы скорость света в миллионы раз. Но дело-то в том, что «адские звезды» согласно общей теории относительности не могут в принципе существовать как стабильные объекты. Однако об этом тоже немного позже…