Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Астрономия и космос » Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги бесплатно TXT) 📗

Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги бесплатно TXT) 📗

Тут можно читать бесплатно Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги бесплатно TXT) 📗. Жанр: Астрономия и космос / Физика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

ai = Gi e-r/cr, Gi = Ai e-Biτ,

где ai — компоненты негравитационного ускорения, Ai, Bi — постоянные, τ — время от начальной эпохи (в сутках), деленное на 104, c и α — неотрицательные постоянные. Дельземме и Миллер [Delsemme and Miller, 1971] получили зависимость испарения различных льдов от гелиоцентрического расстояния. Сравнение этих зависимостей со световыми кривыми некоторых комет показало, что они очень близки к кривым газовой производительности водяного снега. Для учета влияния негравитационных сил на движение комет С. Секанина предложил эмпирическую зависимость скорости испарения водяного снега от гелиоцентрического расстояния:

Астероидно-кометная опасность: вчера, сегодня, завтра - i_062.png

где r0 = 2,808 а.е., k = 4,6142, n = 5,093, m = 2,15, α = 0,1113.

Марсден [Marsden et al., 1973] применил эту зависимость для нахождения негравитационных параметров многих комет. В дальнейшем за этим методом закрепилось название «метод Марсдена». В этом методе составляющие негравитационного возмущающего ускорения в орбитальной системе координат направлены соответственно по радиус-вектору, перпендикулярно радиус-вектору в плоскости орбиты и перпендикулярно к плоскости орбиты:

ai = Gig(r), Gi = Ai e-Biτ (i = 1, 2, 3),

где Ai, Bi — постоянные, определяемые из наблюдений для каждой кометы, τ — время, прошедшее от начальной эпохи. В настоящее время этот метод активно используется при моделировании действий негравитационных ускорений.

Негравитационные ускорения могут изменять период обращения кометы на величину до нескольких дней. Так, например, орбита кометы Галлея, полученная по наблюдениям 1835 и 1910 гг. без учета негравитационных эффектов, дает ошибку в моменте прохождения кометой перигелия в 1759 г. в 4,3 сут. Для расчетов возможного столкновения кометы с Землей такая ошибка является существенной.

Недостаточно точное знание негравитационных эффектов в движении комет является одной из основных причин, до настоящего времени затрудняющих описание динамики многих комет. Подробные исследования негравитационных ускорений в движении комет были проделаны Секаниной в работах [Sekanina, 1979; 1986], в которых рассматривались различные возможные механизмы, вызывающие отклонение движения комет от гравитационного закона. Им же выдвигались предположения, что эти отклонения могут быть вызваны взрывным процессом, проявляющимся «толчком», заметным в движении кометного ядра. Секанина предложил наряду с орбитальным учитывать и вращательное движение кометного ядра.

Однако негравитационное ускорение является не единственным фактором, влияющим на точность определения орбит комет. Как уже отмечалось, в результате сублимации вещества с поверхности кометы в кому выносится большое количество газа и пыли. Это вещество окружает ядро достаточно плотным облаком, центр яркости которого далеко не всегда совпадает с ядром кометы. Это явление получило в научной литературе название смещения фотоцентра кометы. Впервые оно было зафиксировано визуально во время наблюдения кометы Свифта — Туттля (109P/Swift — Tuttle) в 1862 г. Наблюдатели отмечали появление яркого вторичного ядра. Позднее Бютнер [Buttner, 1918], исследовавший движение кометы 1853 III, отметил, что ошибка наблюдений уменьшается, если предположить, что наблюдения кометы имеют систематическое смещение относительно ядра в сторону Солнца. По его оценкам величина этого смещения была постоянна и равна 2000 км. В дальнейшем исследователи движения комет неоднократно обращались к этому предположению при обработке наблюдений комет. Так, Ситарский [Sitarski, 1984] показал, что с учетом смещения фотоцентра наблюдения комет 1960 II, Григга — Шьеллерупа (26P/Grigg — Skjellerup) и Кирнса — Кви (59P/Kearns — Kwee) представляются лучше, чем без его учета. Йоманс и Шодас [Yeomans and Chodas, 1989], исследуя движение кометы Галлея на интервале трех и четырех появлений кометы, нашли, что величина смещения фотоцентра кометы равна 880 км, при этом они предполагали, что величина смещения изменяется обратно пропорционально квадрату гелиоцентрического расстояния. В работе [Medvedev, 1993] для объяснения явления смещения фотоцентра кометы относительно центра инерции ядра была предложена гипотеза о существовании в голове кометы точки относительного равновесия, в которой накапливается пыль, выносимая с поверхности кометы газом. Показано, что такая точка существует, расположена на линии комета — Солнце и асимптотически устойчива для движений вдоль линии комета — Солнце. Получена простая формула, позволяющая вычислять величину расстояния от этой точки до ядра кометы в зависимости от газопроизводительности и гелиоцентрического расстояния кометы.

Еще одним из эффектов сублимации вещества с поверхности ядра кометы является уменьшение массы и изменение формы кометного ядра. По исследованиям, проведенным в ходе последнего прохождения кометы Галлея через перигелий, эта комета теряет 0,1–0,2 % своей массы за один оборот вокруг Солнца. Учитывая, что средний радиус ядра кометы Галлея составляет 5 км, получаем, что со всей его поверхности в результате сублимации уносится слой толщиной примерно 2,5 м за одно появление кометы, а для комет группы Крейца (см. раздел 4.6) эта величина достигает 20 м. Поэтому время жизни комет на короткопериодической орбите (с периодом обращения меньше 200 лет) ограничено.

Наиболее вероятны три сценария эволюции формы кометного ядра в зависимости от его состава.

1. Ядро кометы ледяное с относительно небольшой долей твердых примесей, не влияющих на сублимацию кометного вещества (модель Уиппла). В этом случае возможно полное испарение кометного ядра. Такая возможность была рассмотрена в работе [Лебединец и др., 1983]. Авторы считали, что ядро имеет сферическую форму и вследствие быстрого вращения вокруг своей оси сохраняет форму вплоть до полного испарения. Кроме этого, в работе указывается на возможность образования астероида группы Аполлона при наличии внутри кометы осколка скальной породы.

2. Ядро кометы — конгломерат льдов и нелетучей составляющей силикатной и углеродной природы. При испарении летучих веществ часть вещества остается в виде пылевой матрицы на поверхности, ослабляя со временем газопроизводительность кометы. Со временем на поверхности ядра кометы образуется мощная пылевая корка, препятствующая испарению вещества.

В работе [Rickman, 1987] рассмотрена эволюция кометного ядра с учетом пылевой составляющей. Рассматривались два варианта физической эволюции кометного ядра:

а) полная дезинтеграция и образование метеорного потока на орбите кометы;

б) образование астероидоподобного небесного тела с орбитой, похожей на

орбиты астероидов группы Аполлона. При этом, по мнению автора, форма кометного ядра не претерпевает заметных изменений и близка к сферической.

3. Кроме того, необходимо упомянуть случаи, когда ядро кометы состоит из нескольких крупных ледяных фрагментов, смерзшихся в единое тело (модель «конгломерат льдов») или нескольких каменных глыб, «cклееных» льдом. В момент сближения такого ядра с Солнцем в результате нагрева ядра солнечным излучением часть осколков может терять механический контакт и образовывать компактный метеорный поток. Форма кометного ядра при такой эволюции полностью определяется расположением этих осколков в теле кометы.

Наши знания о форме кометных ядер (до исследования кометы Галлея с близкого расстояния) были чрезвычайно скудны, наземные наблюдения не давали однозначного ответа. Только после того, как впервые комета Галлея была сфотографирована с близкого расстояния, были получены достоверные сведения о форме ее ядра. Оказалось, что это ядро имеет вытянутую форму. Вскоре появилась работа Джуита и Мич [Jewitt and Meech, 1988], в которой утверждалось, что вытянутая форма ядра кометы скорее правило, чем исключение. В указанной работе приводятся результаты фотометрических наблюдений ряда комет и астероидов, проведенных с использованием ПЗС-матриц, и на основании этих наблюдений проведено сравнение физических характеристик этих объектов. Сделан вывод о том, что ядра комет в среднем имеют более вытянутую форму, чем астероиды. На рис. 4.10 приведены фотографии ядер комет Галлея и Борелли (19P/Borrelly), полученные с борта космического аппарата (КА), подтверждающие предположение о вытянутой форме кометных ядер.

Перейти на страницу:

Шустов Борис читать все книги автора по порядку

Шустов Борис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Астероидно-кометная опасность: вчера, сегодня, завтра отзывы

Отзывы читателей о книге Астероидно-кометная опасность: вчера, сегодня, завтра, автор: Шустов Борис. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*