Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги бесплатно TXT) 📗
После пролета ярких метеоров нередко остаются газовые или ионизационные следы в виде серебристо-голубой полоски вдоль траектории полета. Длительность существования такого следа колеблется от нескольких секунд у обычных метеоров до нескольких десятков минут у болидов. Анализ следов показал, что интервал высот образования метеорных следов заключен в пределах 80–95 км. Пылевые метеорные следы образуются после пролетов ярких болидов, сопровождаемых выпадением метеоритов. Они видны благодаря отражению солнечного света и наблюдаются днем или в сумерках. Высоты их образования лежат от 40 км и ниже.
После того как образовался метеорный след, он начинает деформироваться и дрейфовать. Изучение метеорных следов и их дрейфа позволило обнаружить, что на высотах 80–100 км существуют ураганные ветры со скоростями, достигающими 70 м/с. Используя радиолокационные методы, удалось получить суточные и сезонные вариации скорости ветров в метеорной зоне. Обработка многолетних наблюдений показала, что средняя скорость ветров в метеорной зоне зависит от фазы цикла солнечной активности. Например, оказалось, что во время максимума солнечной активности преобладающая скорость ветра на широте 38,5° почти вдвое больше, чем во время минимума.
5.2. Методы изучения метеоров и характеристики метеоров
Основные сведения о метеороидном веществе получают с помощью методов, основанных на астрономических наблюдениях. Другим источником сведений о метеороидном веществе являются метеориты — остатки крупных метеорных тел, разрушившихся и испарившихся не полностью и упавших на земную поверхность. С началом космической эры на космических аппаратах стали устанавливать специальные устройства для регистрации метеороидного вещества — датчики для регистрации ударов мелких метеороидов и межпланетной пыли. Устанавливаемые на геофизических ракетах, космических зондах и искусственных спутниках Земли датчики производят сбор и счет пылинок в верхней атмосфере с помощью ловушек и счетчиков. И, наконец, суммарный эффект отражения и рассеяния, создаваемый множеством отдельных частиц и их роев, концентрирующихся к Солнцу и к плоскости эклиптики, порождает явление слабого свечения — зодиакальный свет. Его фотометрическое изучение дает некоторые интегральные характеристики облака межпланетной пыли.
При изучении метеоров применяются различные прямые и косвенные методы наблюдения — визуальные, фотографические, радиолокационные и телевизионные. Каждый из этих методов имеет свою область применения, специфические особенности и результативность. Ни один из них не может полностью заменить остальные. Поэтому для изучения комплекса метеорного вещества в межпланетной среде требуется обобщенный анализ результатов исследований, проводимых различными методами. Наиболее массовые исследования орбит метеорных тел, вторгающихся в атмосферу Земли непрекращающимся по времени потоком, проводятся методами базисных фотографических, радиолокационных и телевизионных наблюдений метеоров.
Существует условная классификация метеоров по способу их наблюдения или, точнее, обнаружения: визуальные метеоры, телеметеоры (видимые в телескоп визуально или с помощью телевизионной техники), фотометеоры (наблюдаемые фотографическим методом) и радиометеоры (наблюдаемые радиолокационным методом). К телеметеорам относят метеоры, которые уже нельзя увидеть невооруженным глазом. Масса фотометеоров более 0,1 г. Радиометеоры уже нельзя зарегистрировать с помощью фотографических методов; они порождаются метеороидами, масса которых от 10-4 г до 0,1 г.
До изобретения фотографии, широкоугольных астрографов и методик фотографирования метеоров и болидов, т. е. почти до конца XIX в., наблюдения метеоров осуществлялись только визуальным способом.
Какие же данные можно получить из визуальных наблюдений метеоров? Самое простое — это подсчет числа метеоров как во время активности метеорных потоков, так и на постоянной основе. Проведенный по определенной методике такой счет называется многократным (или квалифицированным) и позволяет определять и уточнять такие характеристики метеорных потоков, как часовые числа (средние за период или ежегодные), сезонные и суточные вариации численности метеоров и т. п. Более сложная задача — это регистрация моментов времени, звездной величины и видимой траектории метеора с фиксацией таких особенностей как, например, наличие вспышек по траектории или в конце следа метеора, цвет, наличие и длительность существования следа после пролета метеора и т. п. Еще более сложные визуальные наблюдения — это базисные наблюдения, которые позволяют вычислить скорости, высоты и направления движения метеороидов относительно поверхности Земли. Базисные наблюдения дают возможность определить элементы орбиты метеороида, его массу, предсказать выпадение метеорита и примерно установить область его поиска (место выпадения).
Конечно, визуальные наблюдения дают большие ошибки при оценке тех или иных параметров метеоров. Но при этом группы астрономов-любителей могут без изготовления сложного оборудования охватить наблюдениями огромные области неба практически во всех местах земного шара. Информация, полученная после обработки визуальных наблюдений, имеет огромное значение, так как позволяет построить и уточнить распределения частиц по массам в метеорных потоках и в спорадическом фоне, построить профиль активности метеорного потока и т. п.
В конце XIX в. в метеорной астрономии стали применяться фотографические методы наблюдений. Первая фотография метеора, принадлежащего метеорному дождю Андромедиды, была получена в 1885 г. в Праге. В 1894 г. на Йельской обсерватории начали проводить базисные (из двух пунктов) фотографические наблюдения метеоров. В 1900 г. там же для вычисления скорости метеоров перед фотографической камерой стали устанавливать обтюратор. Он позволяет периодически прерывать экспозицию, при этом след метеора становится пунктирным, и величина расстояния между штрихами дает возможность определить видимую скорость метеора. В 1904 г. профессор Московского университета С. Н. Блажко организовал систематическое фотографирование и спектрографирование метеоров. С 1936 г. для фотографирования метеоров начали применяться малые фотографические камеры с широкоугольными объективами, что позволяло несколькими такими камерами перекрывать все небо, видимое из одного пункта, и регистрировать все метеоры ярче -1m. В начале 1950-х гг. были изготовлены специальные светосильные камеры типа Супер-Шмидт и с их помощью были сфотографированы метеоры яркостью +3,5m, т. е. практически такие же, как и те, что видимы невооруженным глазом.
Фотографические методы наблюдений на порядок повысили точность определения всех параметров метеоров и показали, что основная часть метеоров движется вокруг Солнца по эллиптическим орбитам. Применение фотографических камер позволило во многих странах организовать так называемые фотографические метеорные патрули. Некоторые из них действуют до настоящего времени.
С 1947 г. на обсерватории в Онджейове в Чехии была начата программа базисного фотографирования малыми камерами со вторым пунктом, расположенным в 40 км от Онджейова на станции Прчице. На первом пункте находились 10 неподвижных камер с обтюраторами и объективами Тессар и 10 камер на параллактической монтировке для определения моментов времени пролета болида. На второй станции располагались 10 неподвижных камер с обтюраторами. После подготовительной работы программа была запущена в 1951 г., а спустя 8 лет, в апреле 1959 г. на 10 фотопластинках на обеих станциях было сфотографировано падение метеорита Пршибрам. Это событие послужило толчком для создания нескольких так называемых болидных сетей: с 1963 г. работает Европейская болидная сеть на основе чехословацкой сети (с 1968 г. к ней примкнули болидные станции ГДР и ФРГ), с 1964 г. — Прерийная болидная сеть в США [Мак-Кроски и др., 1978] и с 1971 г. — Канадская болидная сеть [Halliday et al., 1996]. Из всех этих сетей действующей до настоящего времени остается только Европейская болидная сеть, которая претерпела ряд модернизаций.