Космические рубежи теории относительности - Кауфман Уильям (книги регистрация онлайн .TXT) 📗
Вероятно, для понимания эффекта увлечения инерциальных систем чёрными дырами лучше всего использовать простой опыт с лампами - вспышками. Лампа - вспышка (типа используемой в фотографии) даёт мгновенный импульс света. В обычном плоском пространстве-времени такой мгновенный импульс света распространяется одинаково во всех направлениях от лампы со скоростью 300000 км/с. В любой момент после вспышки существует распространяющийся наружу сферический слой света с центром в точности там, где находится лампа (см. рис. 11.1). Этот расширяющийся слой света можно схематически изобразить в виде окружности, в центре которой находится лампа-вспышка.
РИС. 11.1. Лампа-вспышка в плоском пространстве-времени. Звёздочкой обозначено положение лампы-вспышки в момент испускания светового импульса, окружность - положение расширяющегося наружу сферического слоя света через 1 микросекунду после вспышки. В плоском пространстве-времени центр слоя света -это местоположение лампы в момент вспышки.
Чтобы разобраться в свойствах чёрных дыр, представим себе, что на разных расстояниях от дыры расположено множество ламп-вспышек. Возьмем сначала статическую (шварпшильдовскую) чёрную дыру, изображенную на рис. 11.2. Пусть лампы-вспышки, находящиеся на разных расстояниях от чёрной дыры, испустят свои световые импульсы; посмотрим, где будут находиться получившиеся расширяющиеся слои света. Вдали от чёрной дыры, где пространство-время практически плоское, центром такого расширяющегося слоя всегда оказывается место, в котором находилась лампа-вспышка в момент испускания импульса. Однако, переходя к лампам, расположенным всё ближе и ближе к чёрной дыре, мы заметим, что расширяющийся сферический слой оказывается всё более сдвинутым в сторону дыры. Если же лампа вспыхнула на самом горизонте событий, то расширяющийся слой света будет находиться полностью с внутренней стороны горизонта. Так должно быть, потому что ничто - даже свет - не может выйти через горизонт наружу. Внутри же горизонта событий свет так сильно притягивается к сингулярности, что место, где находилась лампа-вспышка, лежит вообще вне расширяющегося сферического слоя; это видно из рис. 11.2.
РИС. 11.2. Вспышки света вблизи шварцшильдовской чёрной дыры. Расширяющиеся сферические слои света от лампы-вспышки, которую включают около невращающейся чёрной дыры, затягиваются в дыру. При этом сферические слои света, испущенного лампой на горизонте событий или внутри его, распространяются только внутрь по отношению к месту, в котором произошла вспышка. Горизонт событий здесь одновременно играет роль предела статичности.
Этот эксперимент свидетельствует, что внутри горизонта событий шварцшильдовской чёрной дыры сохранять состояние покоя невозможно. Так как двигаться быстрее света нельзя, то всё, что попало внутрь горизонта событий, втягивается в сингулярность. Помимо того, если вы, находясь на горизонте событий, хотите остаться на нём в состоянии покоя, то для этого вам потребуется направленная наружу скорость, равная скорости света. Вообразим снова космонавта, летящего на космическом корабле. По мере приближения к чёрной дыре он должен включать двигатели корабля на всё большую и большую мощность, чтобы не упасть в дыру. Чем ближе корабль подходит к дыре, тем большую мощность должны развивать его двигатели, чтобы удержать корабль на постоянной высоте над дырой. Разумеется, на горизонте событий потребовалась бы такая мощность двигателей, чтобы скорость корабля в направлении от чёрной дыры стала равна скорости света. В противном случае космический корабль «засосало» бы внутрь дыры; оказавшись под горизонтом событий, корабль был бы обречен на неизбежное падение на сингулярность, сколь бы мощными ни были бы его двигатели. Поэтому горизонт событий шварцшильдовской чёрной дыры является наименьшим расстоянием от дыры, на котором космонавт ещё мог бы находиться в состоянии покоя. Следовательно, в шварцшильдовской чёрной дыре горизонт событий - это одновременно и предел статичности. На пределе статичности необходимо двигаться со скоростью света, чтобы оставаться на одном и том же месте.
Теперь повторим опыт с лампами-вспышками вблизи вращающейся чёрной дыры. Вдали от дыры, где пространство-время практически плоское, расширяющиеся сферические слои света по-прежнему имеют своим центром место, где находилась лампа-вспышка в момент испускания светового импульса. Однако по мере приближения к чёрной дыре становятся заметными сразу два эффекта. Как и прежде, гравитационное поле чёрной дыры затягивает свет внутрь. Но так как дыра вращается, пространство-время вокруг неё вовлекается в это вращение. Поэтому расширяющийся слой света тоже вовлекается в это движение в том же направлении, в котором вращается дыра. Как видно из рис. 11.3, совместное действие этих двух эффектов приводит к тому, что расширяющийся сферический слой света вовлекается одновременно в падение внутрь и во вращение вокруг дыры. Чем ближе к чёрной дыре находится лампа-вспышка, тем сильнее выражено это явление, причем над горизонтом событий существует даже область, где расширяющиеся слои света оказываются полностью смещенными от места, в котором лампа испустила свой импульс. В итоге оказывается, что вблизи вращающейся чёрной дыры предел статичности расположен выше горизонта событий. Ещё задолго до приближения к горизонту событий космонавт на своем корабле обнаружит, что должен двигаться со скоростью света, чтобы оставаться в покое. Внутри предела статичности он окажется вовлеченным в непреодолимое движение внутрь и вокруг дыры независимо от мощности двигателей корабля.
РИС. 11.3. Вспышки света вблизи вращающейся чёрной дыры. Расширяющиеся сферические слои света от лампы-вспышки, которую включают около вращающейся чёрной дыры, сразу затягиваются внутрь дыры и увлекаются в направлении её вращения. Под влиянием этих двух эффектов предел статичности оказывается выше горизонта событий.
Из того факта, что предел статичности вращающейся чёрной дыры лежит выше её горизонта событий, вытекают важные следствия. Как и для всех других чёрных дыр, после пересечения горизонта событий уже невозможно вернуться в свою Вселенную. Однако из любого места выше горизонта событий вернуться в свою Вселенную всегда возможно. Значит, если космонавт опустился ниже предела статичности, он ещё может выбраться наружу, если только он не ушел и под горизонт событий иными словами, в пространстве-времени вокруг вращающейся чёрной дыры существует удивительная область, где оставаться в покое невозможно, но которую можно посещать с возвратом назад в свою Вселенную. Эта область расположена между пределом статичности и горизонтом событий и называется эргосферой. Схематический разрез эргосферы показан на рис. 11.4.
РИС. 11.4. Эргосфера. Между пределом статичности и горизонтом событий, окружающими вращающуюся чёрную дыру, находится область пространства-времени, называемая эргосферой. Внутри эргосферы невозможно находиться в состоянии покоя, но туда можно попасть и снова выбраться оттуда, не покидая нашу Вселенную.
Одно из самых удивительных свойств эргосферы было открыто в 1969 г. Роджером Пенроузом. Пенроуз выполнил расчёт движения тела, падающего в эргосферу вращающейся чёрной дыры и распадающегося там на две части. Он предположил, что одна часть падает под горизонт событий (и поэтому теряется навсегда), а другая отскакивает обратно в нашу Вселенную. Этот процесс изображен на рис. 11.5. Разумеется, возвращающаяся обратно часть будет меньше, чем первоначальное тело. И всё же если это тело двигалось точно с нужной скоростью и в нужном направлении, то энергия выброшенной части может стать намного больше энергии первоначального объекта. В результате чёрная дыра станет вращаться немного медленнее. Таким образом от вращающихся чёрных дыр можно получить большое количество энергии: с помощью рассмотренного здесь механизма Пенроуза часть энергии вращения дыры может быть передана выбрасываемому из эргосферы веществу.