Космические рубежи теории относительности - Кауфман Уильям (книги регистрация онлайн .TXT) 📗
Теперь, после того как мы подробно рассмотрели ход различных траекторий лучей света вблизи керровской чёрной дыры, можно представить себе, как будет выглядеть вращающаяся чёрная дыра для удалённого астронома или достаточно смелого космонавта. Представим себе сначала астронома в нашей Вселенной, наблюдающего керровскую чёрную дыру. Поскольку дыра обладает осевой симметрией, астроном будет наблюдать разные картины в зависимости от того, под каким углом к оси вращения дыры он наблюдает. Для удобства на рис. 12.14 введен азимутальный угол θ. При θ = 0 удалённый астроном смотрит прямо вдоль оси вращения дыры, а при θ = 90° - вдоль её экваториальной плоскости.
РИС. 12.14. Азимутальный угол θ. Если рассматривать керровскую чёрную дыру под разными углами, она будет выглядеть различно. Для указания, с какого направления рассматривается чёрная дыра, удобно пользоваться азимутальным углом θ.
РИС. 12.15. Как выглядит сингулярность. На этой последовательности схем показано, как выглядит сингулярность предельной керровской чёрной дыры (М = а) под разными углами. Свет из отрицательного пространства проникает сквозь центр кольцевой сингулярности (изображен пунктирной линией).
Пусть наш астроном излучает центр вращающейся чёрной дыры с помощью чрезвычайно мощного телескопа. Астроном находится так далеко от дыры, что пространство-время для него плоское, а телескоп направлен прямо на сингулярность. На рис. 12.15, выполненном по расчётам Каннингэма, показано, что увидит астроном под разными углами в случае предельной керровской дыры (М = а). Глядя вниз по оси вращения (при θ = 0), он видит круговую область, заполненную светом, проходящим из отрицательного пространства через кольцевую сингулярность. Если сама сингулярность также излучает свет (а это действительно так; причины будут обсуждены в одной из следующих глав), то её излучение выглядит как кольцо, окружающее круг света, идущего из отрицательного пространства. Между кругом света из отрицательного пространства и световым кольцом от сингулярности находится область, в которой распространяется свет из положительного пространства - тот самый, который сначала нырнул в отрицательное пространство, а потом снова вынырнул оттуда. Свет из предыдущей Вселенной прошлого (в положительном пространстве), пришедший к дыре рядом с внутренним краем кольцевой сингулярности, подвергается действию сильного антигравитационного поля. Поэтому такой свет отталкивается сингулярностью и снова выбрасывается в положительное пространство нашей Вселенной. Снова необходимо подчеркнуть, что говорить о выходе света из керровской чёрной дыры можно потому, что мы рассматриваем здесь сильно идеализированный теоретический случай. В такое полное решение Керра фактически входят как чёрная, так и белая дыра.
Если смотреть на дыру под углом к оси её вращения, то кружок света из отрицательной Вселенной становится эллиптическим и уменьшается в размерах. При ещё больших углах область, заключающая в себе свет из отрицательной Вселенной, уменьшается и вытягивается ещё сильнее. К тому же и светящийся образ сингулярности становится всё более вытянутым эллипсом по мере того, как мы смотрим на керровскую сингулярность всё более и более в профиль. Как и прежде, область между светом из отрицательного пространства и от сингулярности заполнена лучами из положительного пространства, которые ненадолго нырнули в отрицательную Вселенную и вернулись назад.
Описанный только что анализ касался лишь вида самой сингулярности. Если наблюдающий чёрную дыру астроном сменит окуляр своего телескопа на широкоугольный, то он сможет увидеть и области на больших расстояниях от сингулярности. Чтобы разобраться в такой цельной картине вращающейся чёрной дыры, необходимо обратиться к диаграммам Пенроуза.
РИС. 12.16. Диаграмма Пенроуза для предельной керровской чёрной дыры (М = а). Астроном в нашей Вселенной видит свет, приходящий из разных мест, при наблюдении вращающейся чёрной дыры. К астроному в нашей Вселенной (Вселенная 3) приходит свет из отрицательного пространства (Вселенная 2) и связанной с этим пространством сингулярности. К астроному также отражается изнутри дыры свет из предыдущей Вселенной (Вселенная 1) и из ранних эпох нашей Вселенной.
Рассмотрим диаграмму Пенроуза для предельной керровской дыры (М = а), изображенную на рис. 12.16. Вспомним, что на всех таких пространственно-временных диаграммах лучи света всегда направлены под углом 45°. На данной диаграмме Пенроуза изображены мировые линии характерных лучей света, которые может увидеть астроном в нашей Вселенной (Вселенная 3). Прежде всего он получает свет от F- из отрицательной Вселенной (Вселенная 2). Этот свет приходит от самого центра кольцевой сингулярности. Астроном получает также свет от сингулярности, ограничивающей Вселенную 2 и тем самым разделяющий положительное пространство (справа) и отрицательное пространство (слева). Вид световой области из Вселенной 2 и от сингулярности показан на рис. 12.15. Однако с наружной границы света, приходящего от сингулярности, астроном видит световые лучи, идущие ещё от двух источников.
Звёзды и галактики в нашей Вселенной (а также наверняка и в других Вселенных) испускают свет во всех направлениях. Часть этого света попадает на вращающуюся чёрную дыру. Когда этот свет проходит в эргосферу дыры, он многократно прокручивается вокруг оси вращения. Грубо говоря, часть этого света испытывает действие «центробежных сил», отбрасывающих лучи назад во Вселенную. Иными словами, луч света из F- нашей Вселенной и F- предыдущей Вселенной (Вселенной 1) могут снова отражаться в положительное пространство. Удалённый астроном может поэтому видеть свет из Вселенной 1 и из нашей Вселенной (от ранних этапов её истории!).
РИС. 12.17.
А: Вид предельной керровской чёрной дыры (M = а) при θ = 0°. При наблюдении прямо по оси вращения удалённый астроном видит свет из Вселенной с отрицательным пространством и из предыдущей Вселенной с положительным пространством. Он видит свет также из самых ранних эпох своей собственной Вселенной.
Б: Вид предельной керровской чёрной дыры (М = а) при θ = 45°. Если направление наблюдения характеризуется промежуточным значением угла между осью вращения и экваториальной плоскостью, то вид чёрной дыры в основном останется тем же, что на рис. 12.17, A. Но, поскольку дыра вращается, сингулярность будет казаться сдвинутой с центра поля зрения.
В: Вид предельной керровской чёрной дыры (М = а) при θ= 90°. При взгляде из экваториальной плоскости астроном видит сингулярность «в профиль». Свет, обращающийся вокруг сингулярности в экваториальной плоскости, может уходить от дыры по спирали к удалённому астроному.
На рис. 12.17,А-В, изображен полный вид предельной керровской чёрной дыры, как её видел бы удалённый астроном в нашей Вселенной. Во всех случаях характерный вид сингулярности взят с рис. 12.15. Центральная часть дыры всякий раз окружена большой круговой областью, заполненной светом из Вселенной 1. Этот свет отражается в сторону астронома из глубокой внутренней части дыры. Вне этой круговой области астроном видит свет от объектов из его собственной Вселенной. Таким образом, астроном, рассматривая вращающуюся чёрную дыру, может наблюдать, что происходит в отрицательной Вселенной и что происходило в предшествующей положительной Вселенной. К тому же свет из Вселенной 3, наблюдаемый рядом с дырой, приходит от раннего этапа нашей собственной Вселенной (из F- Вселенной3). Поэтому астроном в принципе должен увидеть, что происходило миллиарды лет назад! У него появляется принципиальная возможность увидеть образование Земли, динозавров или доисторического человека - всё зависит от того, куда именно он будет смотреть.