Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич (книги онлайн без регистрации полностью .txt) 📗
2,48°.
Эксцентриситет орбиты
0,057.
Средняя орбитальная скорость
9,7 км/с.
Наклон экватора к орбите
26,7°.
Масса
5,69×10
26
кг.=95,16М
⊕
.
Средняя плотность
0,69 г/см
3.
Экваториальный радиус R
e
(на уровне давления 1 бар)
60268 км.=9,46R
⊕
.
Полярный радиус R
p
(на уровне 1 бар)
54364 км.=8,53R
⊕
.
Сжатие, (R
e
—R
p
)/R
e
1/10,2.
Ускорение силы притяжения на экваторе
10,44 м/с
2
(ур. 1 бар).
Ускорение свободного падения на экваторе
8,96 м/с
2
(ур. 1 бар).
Скорость ускользания (2-я космическая)
35,5 км/с.
Безразмерный момент инерции (в единицах MR
2
)
0,210.
Сферическое альбедо (по Бонду)
0,342.
Геометрическое альбедо (визуальное)
0,47.
Поток солнечного излучения
14,9 Вт/м
2.
Полное поглощаемое излучение
4,30×10
10
МВт.
Эффективная температура
81 К.
Состав атмосферы (в долях объема)
Н
2
(96,3%), Не(3,3%).
Магнитный момент диполя
0,21 Гс R
e
3
.
Наклон оси дипольного компонента к оси вращения
< 1°.
Количество спутников
60.
Сведения о Сатурне получены как наземными средствами, так и с помощью американских космических зондов, которых уже было четыре: из них три пролетных — «Пионер-Сатурн» (он же «Пионер-11», 1979), «Вояджер-1» (1980) и «Вояджер-2» (1981); а также один орбитальный — «Кассини-Гюйгенс» (NASA/ESA/ISA), достигший системы Сатурна летом 2004 г. Наиболее существенные результаты дали «Вояджеры» и «Кассини».
Сатурн — планета-гигант, по размеру лишь немного уступающая Юпитеру и обладающая большим сходством с ним. Объем Сатурна в 800 раз больше объема Земли. Период вращения в области широт около 40° составляет 10ч. 39,4мин. В экваториальной зоне он меньше (10ч. 12мин.), а в полярных областях, выше 57°, он превышает 11ч. Быстрое вращение приводит к сильному сжатию планеты: отношение полярного радиуса к экваториальному равно 0,9. Экваториальный диаметр составляет 120540 км. по верхней границе облачного слоя. Средняя плотность Сатурна рекордно низка — ниже плотности воды.
Главное украшение Сатурна — его кольца: внешнее А, среднее В и внутреннее С. Впервые их заметил Галилей в 1610 г. Но из-за несовершенства своего телескопа он не смог распознать кольцо и решил, что видит спутники. Честь открытия колец Сатурна принадлежит Гюйгенсу. Это произошло через 46 лет после наблюдений Галилея, в 1656 г.
Пояса, зоны, вихри и ветры
Хотя Сатурн весьма удален от Земли, он представляет собой один из красивейших небесных объектов даже при наблюдениях с телескопом умеренного размера. Подобно Юпитеру, Сатурн имеет развитую систему поясов и зон. Однако они никогда не бывают видны так ясно, как полосы на Юпитере. Если добавить к этому вдвое большую удаленность Сатурна, трудности исследования планеты с Земли становятся очевидными. И все же астрономам иногда удавалось проследить движение каких-то малоконтрастных пятен, что и позволило найти зональные периоды вращения Сатурна. Но с борта космического зонда видно намного больше подробностей. «Вояджеры-1 и -2» прошли в 1980-81 гг. мимо Сатурна с интервалом в девять месяцев, что позволило проследить за изменением деталей на диске планеты.
Поверхность облачного слоя, которая плохо различалась в 1980 г., в следующем году стала видна довольно ясно. Определяющую роль в этом могла сыграть смена сезонов на Сатурне, где началась весна в северном полушарии. Поскольку наклон экватора к плоскости орбиты составляет у Сатурна 29°, смена времен года там должна приводить к большим, чем на Земле, перепадам притока солнечного тепла в каждом из полушарий. Уже на расстоянии шести недель пути на снимках «Вояджера-2» можно было различить циклонические образования в различных районах планеты. Последовательные снимки помогли детально проследить развитие циклонов.
По аналогии с Большим Красным Пятном Юпитера одно из найденных на Сатурне гигантских овальных образований назвали Большим Коричневым Пятном (БКП). Метеорология Сатурна и Юпитера сходна не во всем. В отличие от антициклонических деталей Юпитера, не поднимающихся выше широт 60°, пояса и зоны Сатурна доходят до очень высоких широт. БКП Сатурна лежит всего в 16° от северного полюса. В отличие от Юпитера, атмосферные потоки, движение которых заметно на фоне облачного слоя и чаще всего направлено к востоку, наблюдаются на очень высоких широтах, вплоть до 78°. Скорость таких потоков достигает 600 м/с. Рядом с ними можно видеть коричневые пятна — это ураганы, причем наибольшие из них по диаметру достигают половины земного шара. Скорость на периферии ураганов сравнительно невелика, около 30 м/с. Из-за существенно большей скорости потоков, чем на Юпитере, эти ураганы быстро затухают, врастая в потоки и обмениваясь с ними энергией.
Небольшой приток солнечного тепла не мог бы обеспечить активную динамику атмосферы Сатурна. Как и на Юпитере, образование вихрей определяется источниками энергии, упрятанными глубоко в атмосфере. Подробные снимки районов умеренных широт показывают большое число местных ураганов с диаметром вихрей 1000 км. и более. Скорость зональных ветров на Сатурне очень велика. В районе экватора она достигает 400—500 м/с, что в 4 раза выше, чем на Юпитере. Однако на широтах 30° и выше скорости меньше, имеют периодический широтный характер и не превышают 100 м/с. По-видимому, время жизни крупных вихрей в атмосфере Сатурна невелико по сравнению с Юпитером, так как сильные ветры разрушают вихри. По данным «Вояджеров» широтное распределение ветров в южном полушарии зеркально повторяет это распределение в северном полушарии. Тем не менее, различие атмосферной динамики двух полушарий становится заметным в их полярных областях.
Протяженный облачный слой и быстро нарастающая в глубину плотность атмосферы значительно ослабляют солнечный свет.
На глубине 350 км. под поверхностью облаков может быть темно. Реальная освещенность зависит от того, каковы характеристики рассеяния света в атмосфере Сатурна. Поскольку предполагается, что структура и состав облачного слоя Юпитера и Сатурна сходны, нижняя граница облаков находится в пределах одной и той же температуры — около 150 К. Но из-за вчетверо меньшего количества тепла, получаемого на единицу площади, верхняя граница облачного слоя Сатурна не совпадает с ее положением у Юпитера. В отличие от Юпитера, спектральные полосы аммиака у Сатурна выражены слабо. Это связано с низкими температурами в надоблачной атмосфере, где пары аммиака вымораживаются. Образующийся именно здесь довольно плотный слой тумана скрывает структуру поясов и зон, которая так хорошо видна на Юпитере.