В нашей галактике - Мухин Лев Михайлович (электронная книга .txt) 📗
Полемика между Эддингтоном и Джинсом развлекала и удивляла ученых в течение многих лет, и лишь в 1939 году американский физик, лауреат Нобелевской премии Г. Бете сумел построить количественную теорию, объясняющую ядерные процессы в звездах. Был наконец перекинут мост между микро- и макромиром и показано, что звезды суть не что иное, как гигантские термоядерные реакторы.
Прежде чем подробно обсудить эту увлекательнейшую тему, вернемся на время к известным законам физики. Это поможет нам лучше понять, почему лишь термоядерные реакции обеспечивают постоянную светимость Солнца и почему именно благодаря им существует на Земле все живое.
В своем изучении биографии нашей звезды — Солнца — мы остановились на том, что оно стало стабильной звездой, вступило в стадию спокойной (конечно, относительно, как мы потом увидим) жизни. Что же представляет собой Солнце сегодня?
Протозвезда стала звездой. Перед нами желтый карлик. Вес его весьма солиден: если бы мы на одну чашу весов положили Солнце, то, чтобы его уравновесить, на другую чашу пришлось бы положить более трехсот тысяч таких планет, как Земля или Венера. Размеры нашего карлика тоже изрядны. Его объем более чем в миллион раз превышает объем Земли.
Солнце излучает огромное количество тепловой энергии. Чтобы представить себе количество этой энергии, приводят обычно следующий пример. Если бы нам удалось мгновенно обложить все Солнце слоем льда толщиной 12 метров, то уже через минуту он бы растаял. А если от Земли к Солнцу перебросить цилиндр из льда диаметром в 3 километра, а потом все излучение Солнца «вогнать» в этот цилиндр, то через 9 секунд эта ледяная колонна превратилась бы в пар. Полная энергия, выделяющаяся при делении килограмма урана-235, около 20 миллиардов килокалорий. Так вот, Солнце ежесекундно излучает энергии в тысячи миллиардов раз больше, чем при ядерном взрыве килограмма урана-235.
А что же такое Солнце с точки зрения физика? Ответ прост, хотя и не сразу очевиден. Солнце — раскаленный газовый шар. Почему газовый? Давайте-ка разделим массу Солнца на его объем, чтобы узнать плотность нашей звезды. Мы тогда получим цифру 1,4 грамма в кубическом сантиметре, то есть побольше, чем плотность воды. О каком газе может идти речь? К тому же это средняя плотность, а ведь в центре Солнца плотности должны быть куда больше, чем полученная цифра.
Все дело в том, что температуры в недрах Солнца огромны — более десяти миллионов градусов, и при таких температурах ни жидкая, ни твердая фазы вещества существовать не могут. И тогда Солнце действительно газовый шар. А что это означает для физика? Да то, что он для описания «поведения» Солнца может использовать, в частности, простейшую формулу, известную из школьного курса физики под названием формулы Клайперона. Она устанавливает связь между температурой, давлением, плотностью и молекулярным весом определенного объема газа.
Но неужели все так просто и жизнь Солнца физик опишет только законом поведения идеального газа? Ведь если бы действовал только этот физический закон, Солнце очень быстро рассеялось бы в космическом пространстве?
Все мы знаем, что, прежде чем выйти из корабля в открытый космос, космонавту нужно пройти шлюзовую камеру. Это необходимо для предотвращения разгерметизации корабля. Если нарушена герметизация, в кабине корабля установится космический вакуум. Ведь давление газа в окружающем космическом пространстве ничтожно, а внутри корабля велико. Вот газ и стремится выйти наружу. То же происходит, когда разгерметизируется кабина самолета. К счастью, это бывает редко. Но когда случается, жизни пассажиров угрожает опасность, так как они сразу вынуждены дышать воздухом на высоте большей, чем Эверест.
Так в чем секрет? Почему наш огромный раскаленный газовый шар не рассеялся в космическом пространстве? Ведь газ в недрах Солнца находится под чудовищным давлением, а вне Солнца — пустота, глубокий вакуум. Дело в том, что благодаря своей огромной массе Солнце сжато силами гравитации, и именно эти силы препятствуют тепловому разлету его вещества в космос.
В наружных слоях Солнца тепловая скорость частиц газа порядка 10 километров в секунду. И не будь гравитации, уже за 10 дней радиус Солнца увеличился бы в 10 раз.
Точно так же как на Земле каждый человек чувствует свой вес, так и на Солнце каждая частичка «знает», что ей никогда не вырваться из гравитационного плена нашей звезды. Вот причина равновесия Солнца. Высокие температуры газа препятствуют силам гравитации совершить катастрофу и заставить сжаться наше Солнце, а гравитация, со своей стороны, «дисциплинирует» Солнце, заставляя его находиться в определенных «рамках».
Все просто и хорошо: мы с вами выяснили, какие силы управляют Солнцем, и, наверное, у многих читателей сложилось впечатление, что Эддингтон был прав, когда говорил: «Нет ничего проще, чем звезда». Быть может, у некоторых появилось даже легкое чувство обманутых надежд: а где же обещанные тайны, проблемы, загадки? Будут и тайны и загадки. Они впереди. И нам еще придется вспомнить, что сказал Фейнман о состоянии дел в современной физике.
Повнимательнее вглядимся в источник светимости Солнца — термоядерные реакции. Сначала решим простой вопрос. Ведь если идет термоядерная реакция (неважно, по какому конкретному механизму), она резко повышает температуру вещества. Это, в свою очередь, должно обязательно повысить скорость процессов, что чревато для звезды весьма опасной возможностью: уподобиться огромной водородной бомбе, в которой термоядерная реакция носит характер взрыва.
Но Солнце светит стабильно, как будто бы не взрывается, и, следовательно, внутри нашей звезды есть механизмы, регулирующие скорость термоядерного синтеза. Что же это за механизмы? Да в общем-то опять школьная физика, все та же формула Клайперона. По этой формуле, если повысить температуру объема газа, немедленно произойдет его расширение, отчего газ тут же охладится. Вот поэтому в Солнце существует жесткий механизм обратной связи, и термоядерные реакции не могут идти в недрах Солнца с произвольной скоростью. Их скорость полностью определяется самой структурой Солнца.
Каковы эти реакции? Главным образом те же, что вызывают взрыв водородной бомбы, — слияние четырех ядер водорода — протонов через ряд промежуточных реакций в ядро атома гелия. Это так называемый протон-протонный цикл. Ядро атома гелия весит чуть меньше, чем четыре протона, и в соответствии со знаменитой формулой Эйнштейна E = mc2 эта разница в массе переходит в энергию, которая и идет на разогрев вещества.
Существует еще один тип ядерных реакций, играющий роль в энергетике Солнца, — это углеродно-азотно-кислородный цикл (С,N,О-цикл), причем его конечный результат, так же как и в протон-протонном цикле, — образование атома гелия из четырех ядер атома водорода.
Здесь происходят очень интересные вещи. Все начинается с того, что ядро углерода захватывает протон — ядро атома водорода — и превращается в радиоактивный азот, который, распадаясь, дает более тяжелый изотоп углерода. Этот изотоп тоже захватывает протон и превращается в обычный азот. Но и азот стремится захватить ядро водорода, тем более что недостатка в водороде внутри Солнца нет. Поглотив протон, ядро азота превращается в радиоактивный кислород, а тот, распадаясь, — в стабильный изотоп азот-15. Азот-15 опять захватывает протон. Но даже в недрах Солнца жадность наказуема: распухшее ядро азота-15 с лишним протоном не в состоянии удержать захваченное и распадается на исходное ядро атома углерода-12 и ядро атома гелия.
В результате начавшее всю цепочку захвата ядро углерода-12 осталось «при своем интересе» и вышло из игры, а из четырех захваченных ядер водорода образовалось ядро гелия. Снова работает соотношение E = mc2, и разность масс между четырьмя протонами и ядром гелия превращается в энергию.
В отличие от первого механизма в различных этапах реакций С,N,О-цикла участвуют атомы углерода, кислорода и азота. Именно поэтому его и назвали С,N,О-цикл. Но если за счет протон-протонного процесса Солнце получает 98 процентов своей энергии, то за счет углеродно-азотно-кислородного процесса только два процента.