Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Астрономия и космос » Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич (книги онлайн без регистрации полностью .txt) 📗

Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич (книги онлайн без регистрации полностью .txt) 📗

Тут можно читать бесплатно Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич (книги онлайн без регистрации полностью .txt) 📗. Жанр: Астрономия и космос / Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Методы изучения метеоритов и их результаты

При нагревании чистого кристаллического железа температура фазового превращения камасит (α-фаза)→тэнит (γ-фаза) составляет 910°С. При типичных средних концентрациях никеля в железных метеоритах (7—14%) превращение γ→α начинается при более низких температурах (650—750°С). При падении температуры в тэните появляется камасит в виде тонких листков, или пластинок, ориентированных вдоль граней октаэдра — четырех плоскостей с эквивалентным расположением атомов. Поэтому железные метеориты в процессе (γ→α)-превращения приобретают октаэдритовую структуру, отражающую направления преимущественного роста пластин камасита.

В зависимости от направления распила метеорита по отношению к октаэдритовой ориентировке его пластин видманштеттеновы фигуры имеют разный рисунок. Сами же пластины в сечении выглядят как балки. Чем меньше содержание никеля в исходном тэните, тем выше температура, при которой начинается фазовое превращение и тем дольше длится рост камаситовых пластин, и тем более толстыми они оказываются к концу роста. Этим объясняется, почему метеориты с высоким содержанием никеля являются тонкоструктурными, а метеориты с низким его содержанием — грубоструктурными, вплоть до образования сплошного монокристалла камасита толщиной до 50 см, как у гексаэдритов.

В конце 1950-х гг. в железных метеоритах советские исследователи обнаружили методом электронного микрозондирования специфический М-образный профиль распределения никеля в сечении тэнитовых слоев, находящихся между камаситовыми. В 1960-х гг. Дж. Голстейн, В. Бухвальд и др. показали, что этот профиль образуется также при (γ→α)-превращениях в никелистом железе при его остывании. Он возникает из-за разной скорости диффузии никеля в камасите и тэните (в камасите она в 100 раз больше) и более низкой растворимости никеля в камасите, чем в тэните. Это открытие дало астрономам новый метод реконструкции истории метеоритов.

Рассчитывая профили никеля в тэните при разных его начальных содержаниях и сравнивая их с измеренными в метеоритах, удается оценить скорости остывания вещества железных метеоритов в недрах родительских тел, а следовательно, и размеры этих тел. Дж. Вуд предложил еще один метод оценки скорости остывания — по ширине тэнитовой пластины и концентрации никеля в ее центре по отношению к среднему содержанию никеля в метеорите. Оба эти метода дали совпадающие результаты. Оказалось, что вещество октаэдритов в интервале температур 600—400°С остывало со скоростью 1—10°С за миллион лет, а иногда и медленнее. Аналогичный результат получился и для железо-каменных метеоритов, металл которых также имеет октаэдритовую структуру.

Более того, изучение металлических частиц, присутствующих в метеоритах других классов, показало, что в них также есть тэнит и камасит. Дж. Вуд применил свою методику, разработанную для железных метеоритов, к хондритам и оценил скорость их остывания. Неожиданно оказалось, что большинство хондритов остывало примерно с той же скоростью, что и железные метеориты: около 10°С за миллион лет в интервале температур 550—450°С. Такое длительное остывание вещества самых разных метеоритов означает, что после разогрева оно находилось глубоко в недрах родительских тел от десятков до сотен миллионов лет.

Расчеты показали, что для обеспечения столь медленного остывания толщина защитного слоя с низкой теплопроводностью (как у каменистого вещества с хондритовым составом) должна составлять 70—200 км. Значит, минимальный диаметр первичных родительских тел метеоритов разных классов был около 140—400 км., а это в точности соответствует размерам крупных астероидов.

Итак, родительскими телами большинства метеоритов были крупные астероиды, причем у некоторых недра были расплавлены, что требовало температуры не менее 1200—1400°С (для вещества хондритового состава). Источником нагрева астероидов могли быть либо радиоактивные элементы (например, изотоп 26Аl, который с периодом полураспада 760 тыс. лет превращается в 26Mg, выделяя много энергии), либо индуктивные токи, которые мог возбуждать в астероидах мощный звездный ветер молодого Солнца. Но пока это гипотезы, не получившие надежного подтверждения. К тому же, некоторое количество метеоритов из научных коллекций не имеют признаков пребывания в недрах родительских тел.

Эпоху вторичного разогрева некоторых метеоритов можно определить с помощью гелий-аргонового метода. Он основан на измерении содержания Не и Аr, возникающих в веществе при радиоактивном распаде, соответственно, Th и 40К. При низкой температуре эти газы удерживаются веществом, но при высокой начинают из него просачиваться (диффундировать). Причем диффузия гелия начинается при температуре выше 200°С, а аргона — выше 300°С. Определив соотношение радиоактивных изотопов и благородных газов, можно определить время, прошедшее от эпохи последнего разогрева образца до температур, выше указанных, до наших дней.

Можно оценить и период самостоятельного существования метеороида, давшего конкретный метеорит, т.е. интервал времени от дробления родительского тела до падения метеорита на Землю. Этот космический возраст метеорита определяют по плотности треков, оставленных в его веществе космическими частицами солнечного или галактического происхождения. Они не проникают глубоко, а задерживаются в слое толщиной около 1 м. Если от родительского тела откалывается обломок и некоторое время самостоятельно живет в межпланетном пространстве, то его космический возраст определяется возрастом наиболее «свежей» его стороны. Оказалось, что космические возрасты различаются у метеоритов разных классов. В частности, для энстатитовых хондритов удалось измерить два достаточно молодых возраста: 7 и 20 млн. лет. А некоторые железо-никелевые по «космическим» часам намного старше: им около 700 млн. лет. Тем не менее, нельзя исключить, что наиболее насыщенная треками космических частиц поверхность хондритов частично разрушается при прохождении земной атмосферы, что может привести к ложной оценке разницы в их возрасте по сравнению с более прочными железными метеоритами.

Абсолютный возраст метеоритов определяют рубидиевостронциевым методом: при распаде долгоживущего изотопа 87Rb образуется стабильный 87Sr; измеряя его содержание по отношению к стабильному изотопу 86Sr, находят возраст метеорита. Он оказывается в пределах 4,5—4,7 млрд. лет, как и у земных пород.

Сложная история метеоритного вещества

Существует еще один важный аргумент в пользу астероидного происхождения большинства метеоритов. Вещество метеоритов во многих случаях представляет сложный конгломерат материалов, которые могли возникнуть в разных, иногда даже несовместимых условиях. Часто примитивные по составу углистые хондриты содержат включения материалов, свойственных обыкновенным, энстатитовым или даже железным метеоритам, и наоборот. Удивительный образец такого вещества представляет метеорит Кайдун массой 850 г., упавший 3 декабря 1980 г. на территорию советской военной базы в Йемене. В нем обнаружены частицы трех типов углистых хондритов, обыкновенного хондрита, двух энстатитовых хондритов, а также водно-измененные частицы металлического железа. Вероятно, это фрагмент тела, имевшего весьма сложную историю.

Такую структуру метеоритов не удавалось объяснить до 1970-х гг. К счастью, при изучении доставленных на Землю образцов лунного грунта (1969—1972 гг.) оказалось, что в большинстве случаев он представляет собой смесь вещества из разных областей лунной поверхности. Лунный грунт многократно перемешан ударами бомбардирующих Луну метеоритов. То же должно происходить и с веществом на поверхности астероидов. Космические снимки астероидов Гаспра, Ида, Матильда и Эрос подтверждают, что их форма неправильная, а поверхность покрыта множеством кратеров. Очевидно, это результат соударений астероидов между собой и с более мелкими телами. По этой причине поверхность астероидов, как и лунная, покрыта слоем раздробленного вещества — реголитом. В настоящую эпоху средняя относительная скорость астероидов в главном поясе, определяемая характером их орбит, составляет около 5 км/с. При такой скорости каждый килограмм вещества несет кинетическую энергию около 107 Дж. В момент столкновения большая часть этой энергии переходит в тепло, что приводит к взрыву, плавлению и испарению значительной части вещества соударяющихся тел. При такой скорости удара давление взрыва достигает 1,5 Мбар. Значительная часть энергии переходит в механическую энергию ударных волн и идет на дробление, разбрасывание или, наоборот, уплотнение (в зависимости от направления и расстояния от места взрыва) окружающего вещества астероида.

Перейти на страницу:

Сурдин Владимир Георгиевич читать все книги автора по порядку

Сурдин Владимир Георгиевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Солнечная система (Астрономия и астрофизика) отзывы

Отзывы читателей о книге Солнечная система (Астрономия и астрофизика), автор: Сурдин Владимир Георгиевич. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*