Чудесная жизнь клеток: как мы живем и почему мы умираем - Уолперт Льюис (читать книги без TXT) 📗
Каждая наша клетка содержит около 30 тысяч различных генов, в то время как некоторым бактериям достаточно всего 500 генов. В генах содержатся коды, согласно которым синтезируются белки и определяется порядок расположения в них аминокислот. В каком бы месте человеческого тела ни находились клетки, они всегда содержат один и тот же набор генов. Однако в зависимости от типа клеток — клеток кожи, нервных или мышечных — в них для синтеза новых белков задействуются различные гены.
Длинные цепочки ДНК в хромосомах клетки плотно сжаты. Компактное расположение ДНК в хромосомах осуществляется за счет особых белков, вокруг которых наматываются нити ДНК. Но в клетке присутствуют белки, которые, чтобы облегчить синтез новых белков согласно содержащемуся в ДНК коду, при необходимости переводят ДНК из компактной формы в развернутую. Под воздействием этих белков готовящиеся к делению клетки хромосомы развертываются и с этого момента занимают в 10 тысяч раз больше места.
Нуклеотиды типа «А», «Т», «С» и «G», входящие в состав длинных молекул ДНК, располагаются в определенном порядке, чтобы обеспечивать кодирование белков при их синтезе, который происходит из 20 различных видов аминокислот. ДНК при этом выполняют роль матрицы — каждому белку соответствует свой ген, по образцу которого осуществляется синтез аминокислот, образующих нужный белок. Таким образом генетический код воплощается в белках, и последовательность нуклеотидов в гене определяет последовательность аминокислот в белке. Это очень похоже на азбуку Морзе, где точки, тире и их совокупность соответствуют определенным буквами алфавита. Последовательность нуклеотидов, которые считываются по три за один раз, соответствует последовательности аминокислот в белке. При этом набор из трех нуклеотидов, которые считываются за один раз, кодирует одну аминокислоту. Так, например, набор нуклеотидов AUG кодирует аминокислоту ацидометионин.
Существуют 64 комбинации нуклеотидов, однако синтезируются всего 20 различных видов аминокислот. Это означает, что некоторые троичные последовательности нуклеотидов используются не для синтеза аминокислот, а для обозначения прерывания процедуры синтеза. Совершенно бессмысленных наборов троичных нуклеотидов не бывает — каждый из них выполняет какую-то определенную функцию. Существует и несколько наборов нуклеотидов, которые кодируют одни и те же аминокислоты. Самый крупный ген состоит из двух миллионов нуклеотидов, размещенных на каждой из его нитей, а самый маленький — из одной тысячи.
Наши ДНК — это помещенные внутри клеточного ядра кладези ценнейшей информации. Однако синтез белков происходит не в ядре, а в окружающей его цитоплазме клетки. Как же это происходит? Сначала содержащийся в ДНК белковый код передается другой аминокислоте — РНК, которая, подобно ДНК, представляет собой цепь из четырех нуклеотидов. Однако, в отличие от ДНК, представляющей собой двойную цепочку, свернутую в спираль, РНК состоит из одной цепочки нуклеотидов. Другое отличие РНК от ДНК заключается в том, что вместо нуклеотида «Т», в цепочке РНК помещен нуклеотид урацил, который легко связывается с нуклеотидом «А». Это означает, что цепочка РНК может присоединяться к цепочке ДНК и дополнять ее.
Открытие РНК последовало после того, как ученые пришли к выводу о том, что должен существовать какой-то механизм передачи генетической информации от ДНК, находящейся внутри клеточного ядра, в цитоплазму. Эта мысль посетила Сиднея Бреннера, ученого из Южной Африки, который является моим кумиром, и Фрэнсиса Крика во время научной конференции, которая состоялась в 1960 году в Кембридже. После этого Бреннер и Крик отправились в США, чтобы провести серию экспериментов, и в ходе их открыли РНК.
Ген включается в активную работу по синтезу новых белков тогда, когда он передает свой код РНК при помощи специального белкового механизма, который копирует генетический код ДНК, представляющий собой последовательность нуклеотидов.
Процесс считывания генетической информации, который называется «транскрипция», начинается с открытия и развертывания небольшой части двойной спирали ДНК в конце хромосомы. Генетические коды этого участка хромосомы копируются затем на растущую по мере продвижения процесса копирования молекулу РНК; при этом белковый копирующий механизм продвигается вдоль нити ДНК. Процесс переноса генетического кода заканчивается, когда на конце РНК синтезируется так называемая терминальная группа аминокислот — ее присутствие сигнализирует об окончании белковой цепочки данного кода. Многие могут подумать, что после этого РНК готова к тому, чтобы на основе ее матрицы начался синтез нужного белка. Однако, как и все остальное клетках, все не так просто.
Большинство генов, которые находятся в наших клетках, содержат в своем составе намного больше нуклеотидов, чем реально требуется для синтеза белков. Те нуклеотиды, которые не нужны для синтеза, называются нитронами. Они копируются на РНК, но перед тем, как она может начать синтез новых белков, удаляются.
Те области РНК, которые непосредственно кодируют последовательность аминокислот в белках, называются аксонами. Они вступают в дело лишь после того, как интроны ретируются при помощи хитроумного механизма, который называется «сращиватель РНК». Удаляя интроны, он одновременно проверяет состояние эксонов и гарантирует то, что они четко связаны воедино. После этого РНК разрешается покинуть клеточное ядро и перейти в область цитоплазмы.
При этом существует еще одно затруднение. Когда РНК разрезается ради извлечения из нее интронов, а затем сращивается опять, то часто эксоны соединяются в неверном порядке. Это приводит к тому, что они начинают синтезировать совсем не те белки, которые нужны. Поэтому специальные механизмы клетки тщательно следят за сращиванием эксонов, чтобы в конечном счете синтезировались именно те белки, которые действительно необходимы, и именно в тех местах клетки, где их ждут.
Активация гена и последующее копирование на РНК содержащейся в нем наследственной информации зависят от воздействия особых белков — так называемых транскрипционных факторов, — которые привязываются к специальным контрольным зонам ДНК. Эти контрольные зоны сами не осуществляют кодирование новых белков — они лишь опознают транскрипционные факторы и используются особым белковым механизмом, который передает генетические коды РНК для дальнейшего синтеза белков. Транскрипция начинается в промоторной области, которая располагается непосредственно перед кодировочной областью. Процесс транскрипции гена начинается только в том случае, если надлежащий транскрипционный фактор достигает соответствующей контрольной зоны. Мы говорим о том, что ген активирован, если осуществляется его транскрипция в РНК; если же транскрипция не осуществляется, то такой ген считается неактивированным.
Для работы с отдельным геном может быть задействована не одна, а сразу несколько контрольных зон, ибо активация гена может потребоваться в самых различных ситуациях и обстоятельствах. Невозможно переоценить важность контрольных зон. Мы вновь вернемся к ним, когда станем рассматривать вопросы развития эмбриона.
Белок, синтезированный одним геном, может активировать несколько других генов или равным образом деактивировать их. Таким образом, в клетке существует система взаимодействия различных генов, определяющая поведение клетки и ее изменение со временем.
Срощенная РНК покидает клеточное ядро, проникает в цитоплазму и направляется к рибосомам — местам сборки белков. Рибосомы — это небольшие округлые белковые образования, в которые попадают РНК и в которых в точном соответствии с последовательностью нуклеотидов РНК происходит синтез новых белков — так, что расположение аминокислот синтезируемых белков точно соответствует последовательности нуклеотидов матричной РНК.
Само превращение последовательности нуклеотидов РНК в последовательность аминокислот вновь синтезируемого белка в рибосомах происходит при помощи небольших молекул РНК, известных как «передаточные РНК». Эти молекулы способны распознавать набор из трех нуклеотидов, которые считываются за один раз, и прикрепляться к той аминокислоте, которая соответствует этому троичному набору. Например, аминокислота лизин кодируется последовательностью нуклеотидов «ААА» или «AAG», а аминокислота тирозин — последовательностью нуклеотидов «UAC» либо «UAU». Передаточная РНК распознает эти последовательности нуклеотидов. Затем вступает в действие рибосома — своеобразная клеточная «фабрика» по производству новых белков.