Аксиомы биологии - Медников Борис Михайлович (полная версия книги .TXT) 📗
Значит, структура фенотипа также информационно избыточна, причем в весьма высокой степени. Генотип может дать подробное описание лишь одной клетки, а затем указать, что она должна повториться сотни тысяч и миллионы раз.
Вот еще хороший пример фенотипической избыточности, который нам еще пригодится в будущем.
Рис. 21. Для нас чрезвычайно важен вопрос, каким путем в процессе прогрессивной эволюции происходит усложнение структуры, увеличение количества информации, потребной для описания организма. Следует помнить, что новая информация не возникает из ничего. Она возникает из избыточной информации при взаимодействии с шумом. На рисунке два кольчатых черня: многощетинковый червь полихета и малощетинковый – обычный дождевой червь. Как видим, тела их состоят из практически идентичных повторяющихся члеников, то есть информация фенотипа в высокой степени избыточна. Мутация (шум в канале передачи) изменяют форму отдельных члеников, строение конечностей на них и внутренних органов. Если эти изменения окажутся приспособительными, отбор сохранит их. Избыточность при этом снизится, но усложнится структура, и количество информации возрастет. Так идет прогрессивная эволюция.
Есть довольно просто устроенные морские кольчатые многощетинковые черви – полихеты. Туловище наиболее примитивных из них разделяется на десятки, а то и сотни члеников. И все эти членики устроены по одному образцу, кроме первого, на котором сконцентрированы органы чувств, второго – с ротовым отверстием и последнего – с анальным отверстием. Значит, для описания фенотипа достаточно только четырех члеников, но при этом необходимо добавить: третий по счету повторяется столько-то раз.
Рис. 22. Вот еще примеры высокоизбыточной фенетической информации. Вымершие членистоногие – трилобиты – имели конечности, практически одинаковые и по форме, и своим функциям: движения, захвата пищи и дыхания. Все это они делали одинаково хорошо (вернее, одинаково плохо). У многоножек (справа) ротовые части – производные конечностей – уже специализированы, однако ноги одинаковы и тело еще не делится, как у насекомых, на грудной и брюшной отделы.
Рис. 23. Различные представители отряда высших ракообразных. Здесь уже тело поделено на головной, грудной и брюшной отделы, которые несут конечности разного строения. Да и членики устроены по-разному. Структура фенотипа в процессе прогрессивной эволюции усложнилась, и требуется больше информации для ее описания.
Ракообразные произошли от предков, похожих на кольчатых червей. У высших ракообразных, например у речного рака, все членики устроены по-разному, особенно различаются конечности, и каждый членик поэтому придется описывать отдельно. Объем информации повышается: ведь это более сложный фенотип. И эта новая информация возникает не из ничего – из избыточной информации фенотипа (ценой снижения избыточности).
Рис. 24. На предыдущих рисунках вы видели примеры избыточности информации а строении тела членистых животных – кольчатых червей, трилобитов, многоножек. У высших членистых монотонность сменяется разнообразием, новая информация возникает за счет избыточной. У речного рака практически каждую конечность надо описывать отдельно, ибо они выполняют разные функции и имеют разную форму: первая и вторая пара – органы чувств, с третьей по пятую – челюсти, с шестой по восьмую – ногочелюсти (передают пищу челюстям), с девятой по тринадцатую – ходильные, с четырнадцатой по восемнадцатую – брюшные. Последняя пара образует «хвостовой» веер: хлопая им, рак плывет задом наперед (ползает он, как и все прочие животные, головой вперед, а не пятится).
Определяя объем информации потребной для описания фенетической структуры, не следует забывать о связях между признакам и организма. Допустим, нам известно о некоем животном только то, что у него одна левая дуга аорты. Кажется, это очень мало. Ошибаетесь: отсюда однозначно следует, что сердце у него четырехкамерное, эритроциты без ядер, хорошо развитый мозг, постоянная температура тела. Это значит, что оно относится к классу млекопитающих. Такие сцепления признаков называются корреляциями. Впервые их широко применил основатель палеонтологии Жорж Кювье. Известно, что он по отдельной кости уверенно описывал облик животного. Существует анекдот про Кювье: один из его учеников решил над ним подшутить, надел на себя шкуру с рогами и копытами, подошел к учителю ночью и прорычал страшным голосом: «Я съем тебя». Кювье спросонья твердо сказал: «Рога и копыта – значит, ты травоядное и не можешь съесть меня». Случай, конечно, вымышленный, но логику Кювье демонстрирует хорошо.
Впрочем, бывали случаи, когда логика Кювье подводила. Большой изогнутый коготь, найденный отдельно от прочих костей, он приписал муравьеду. На деле коготь принадлежал халикотерию: жили на земле и дожили почти до появления на ней человека странные звери, по всем признакам копытные, но имевшие вместо копыт мощные ногти. Так что корреляция отнюдь не всегда бывает полной.
Рис. 28. В организме одна структура может с большей или меньшей жесткостью определять детали строения другой. Именно это позволило нашему замечательному анатому, антропологу, археологу и скульптору М. М. Герасаимову разработать метод восстановления лица по черепу. Здесь приведены две схемы: реконструкция лица неандертальского мальчика из грота Тешик-Таш и головы скифского воина из богатого погребения. Любопытно, что, когда был изготовлен его скульптурный портрет, историки опознали его по барельефам и монетам. Это оказался скифский царь Скилур.
Наш замечательный антрополог, анатом и скульптор М. М. Герасимов, Руководствуясь теми же принципами что и Кювье разработал методику восстановления лица по черепу, причем с точностью, удовлетворяющей не только археологов, но и работников уголовного розыска. А это возможно осуществить только в одном случае: когда структура одной части организма определяет структуру другой.
Рис.29. На молекулярном уровне структура высшего уровня также определяется структурой низшего. На рисунке сверху первичная структура белка – цитохрома С, переносчика электронов в дыхательных цепях (обозначения те же, что и на рис. 16). Внизу: схема вторичной структуры – спирали Полинга – Кори. Ее поддерживают водородные связи между группами —CO – и —NH —. Что образуется из полипептида со вторичной структурой, показано на следующем рисунке.
Этот принцип соблюдается в природе начиная с молекулярного уровня. Первичная структура белковой молекулы – это последовательность аминокислотных остатков в полипептиде. Соседние звенья в пептидной цепочке соединяются водородными связями, образуя спиралеобразную фигуру (так называемая спираль Полинга-Кори). Это вторичная структура. Но спираль Полинга также образует трехмерную третичную структуру, специфичную для каждого белка. Наконец, отдельные белковые глобулы могут объединяться попарно и по четыре, а то и больше, образуя четвертичную структуру. Таков, например, гемоглобин.
И все эти структуры определяются одной – первичной. Значит, в генотипе нужно кодировать только последовательность аминокислот, все остальное возникает при соответствующих условиях само.