Таинственный геном человека - Райан Фрэнк (онлайн книга без txt) 📗
В 1882 году немецкий врач Роберт Кох открыл, что возбудителем смертельно опасной на то время болезни – туберкулеза – является Mycobacterium tuberculosis. Кох составил логическое правило, чтобы выявлять болезнетворность того или иного микроорганизма. Это правило называется постулатами Коха. После идентификации возбудитель заболевания исследовали под микроскопом и должным образом классифицировали. Если клетки микроорганизма были круглыми, его называли кокком, если продолговатыми – палочкой, а если спиралевидными – спирохетой. Бактериологи методично исследовали культурную среду, в которой тот или иной организм растет лучше всего: чистый агар или агар с добавлением бычьей крови либо что-то еще. Они также изучали внешний вид бактериальных колоний на культуральных планшетах: их цвет, размер, хаотичность или упорядоченность границ, выпуклость или уплощенность, гранулированность и различные геометрические формы, которые принимала та или иная колония. Научная база учебников по бактериологии расширялась за счет точных исследований и наблюдений. По мере роста знаний в борьбе против инфекций применялись все новые и новые открытия.
Среди полезной информации, которую бактериологи получили о болезнетворных (патогенных) бактериях, был и такой факт: течение болезни и, соответственно, поведение возбудителя в отношении носителя заболевания можно изменить с помощью определенных мер (например, используя определенную последовательность культур в лаборатории или заражая подопытных животных бактериями разных поколений). Такие манипуляции позволяли усилить или ослабить болезнь, делая микроб более или менее вирулентным. Бактериологи искали способы использования этих знаний в медицине. Так, во Франции Луи Пастер применил принцип ослабления возбудителей и разработал первую эффективную вакцину от бешенства, считавшегося смертельным заболеванием.
В результате этих исследований ученые также заметили, что после усиления или ослабления вирулентности микроба перемены в его поведении передавались будущим поколениям. Но может ли это происходить за счет каких-либо изменений наследственности?
Бактериологи объясняли это явление адаптацией. Данный термин как раз начал входить в моду у эволюционных биологов и обозначал эволюционные изменения в живых организмах, возникающие с течением времени в связи с приспособлением к среде. Тогда ученые еще не предполагали, что наследственность бактерий может определяться генами, поэтому пытались связывать ее с физическим строением самих микроорганизмов и их колоний, с внутренними химическими процессами или даже с их поведением в отношении носителей. Это были измеримые характеристики, бактериальный эквивалент того, что эволюционные биологи называют фенотипом (совокупность физических свойств организма в отличие от генотипа, то есть комплекса генетических характеристик).
Бактериологи также установили, что одни и те же бактерии могут существовать в нескольких подтипах, различие между которыми зачастую определяется антителами. Такие подтипы называют серотипами. В 1921 году британский бактериолог Дж. А. Аркрайт заметил, что колонии вирулентного типа возбудителя дизентерии Shigella, выращенные на покрытых слизью культуральных планшетах, имели гладкую поверхность и выпуклую полусферическую форму, в то время как колонии ослабленных и невирулентных бактерий того же вида имели изломанные границы и шероховатую поверхность и были гораздо более плоскими. Для описания характеристик таких колоний он ввел термины «гладкий» и «шероховатый» (или S и R – от английских слов smooth и rough). Аркрайт отметил, что R-формы возникают в культурах, выращенных в искусственной среде, а не в колониях бактерий, взятых из тканей зараженного человека. Он пришел к выводу, что своими глазами наблюдает дарвиновский процесс эволюции.
Вот как Аркрайт писал об этом: «Инфицированный человеческий организм можно считать средой, задающей патогенным бактериям такую форму, в которой они обычно встречаются нам».
Вскоре исследователи из других стран подтвердили, что утрата вирулентности некоторыми патогенными бактериями сопровождалась такими же изменениями во внешнем виде колоний. В 1923 году Фредерик Гриффит, эпидемиолог, работавший в Министерстве здравоохранения в Лондоне, сообщил, что пневмококки (возбудители эпидемической пневмонии и менингита, которые особенно интересовали Освальда Эвери в Рокфеллеровской лаборатории) формируют аналогичные S- и R-формы на культуральных планшетах. Гриффит был известен как добросовестный ученый, и Эвери был заинтригован.
Эксперименты Гриффита имели и другие результаты, которые поразили и даже шокировали Эвери.
Однажды Гриффит ввел лабораторным мышам невирулентные пневмококки R-типа, относящиеся к штамму, известному как тип I. К инъекции он должен был добавить так называемый адъювант – вещество, которое стимулирует иммунный ответ на пневмококки R-типа. Самым распространенным адъювантом в данном случае была слизь из желудка подопытного животного. Но по какой-то неясной причине Гриффит заменил адъювант взвесью из S-пневмококков, полученных из штамма типа II, которые были специально убиты тепловым воздействием. Лабораторные мыши погибли от острой инфекции, и Гриффит рассчитывал найти в их крови большое количество размножающихся R-бактерий типа I, которые он и ввел в начале эксперимента. Каково же было его удивление, когда вместо этого он обнаружил S-бактерии типа II! Каким образом добавление мертвых бактерий в инъекцию могло изменить серотип живых с R-типа I на крайне вирулентный S-тип II?
Исследователи, включая Эвери, уже доказали, что разница между типами S и R определялась различиями в составе полисахаридных капсул, в которые были заключены клетки бактерий. Опыт Гриффита показал, что тестовые бактерии, изначально представлявшие собой пневмококки R-типа, изменили свои полисахаридные оболочки внутри зараженных организмов и привели их в соответствие вирулентному штамму. Но они не могли просто сбросить одну оболочку и надеть другую. Состав оболочки определяется наследственностью бактерии – это наследуемая характеристика. Культуры бактерий типа S, полученных из тел мертвых мышей, продолжали размножаться. Этому могло быть только одно объяснение: добавление мертвых S-бактерий к живым R-бактериям вызвало у последних мутацию и буквально трансформировало их в S-бактерии типа II.
По словам Дюбо, «[в то время] Гриффит считал естественным, что любые изменения должны оставаться в пределах вида. Он не подозревал, что тип пневмококка можно изменить, – это было сродни превращению из одного вида в другой. Ничего подобного ранее не наблюдалось».
Неудивительно, что Эвери потрясли открытия Гриффита. Как и Роберт Кох до него, Эвери считал, что наследственность бактериальных штаммов остается неизменной. Само понятие мутации, то есть изменения наследственности под влиянием действий экспериментатора, в то время было весьма противоречивым вопросом как в биологии, так и в медицине. Чтобы понять почему, следует сначала объяснить, что такое мутация.
В конце XIX века начался кризис дарвиновской теории. Дарвин и сам понимал, что процесс естественного отбора полагается на какой-то дополнительный механизм или механизмы, способные изменять наследственность таким образом, чтобы можно было выбирать из нескольких наследуемых вариаций. Много десятилетий спустя Джулиан Хаксли прямо указал на эту проблему в первых главах своей книги «Эволюция: современный синтез»: «Естественный отбор как эволюционный принцип подвергся важному критическому переосмыслению, а затем внимание сфокусировалось на природе наследуемых вариаций». В 1900 году голландский биолог Хуго де Фриз предложил инновационный механизм, который мог бы обеспечить возникновение таких вариаций, – концепцию случайных изменений в единице наследования. Возможность для изменения возникает при копировании генов в процессе размножения. Ошибка копирования наследственной информации может привести к случайному изменению в кодировке гена. Де Фриз назвал этот источник наследственных изменений мутацией. После этого Джулиан Хаксли разработал теорию синтеза, объединяющую генетику Менделя (включающую потенциал для изменения наследуемых генов через мутацию) и дарвиновский естественный отбор, действующий на наследственные вариации в рамках вида. Только после этого теория Дарвина вновь обрела авторитет в научных кругах.