Мутанты. О генетической изменчивости и человеческом теле. - Леруа Арман Мари (книги онлайн без регистрации полностью .TXT) 📗
Псевдоахондроплазия – лишь один из числа нескольких недугов, вызывающих появление очень коротких конечностей. Другим примером является собственно ахондроплазия – нарушение, с которым псевдоахондроплазию долго путали. От Птаха-Патайкоя, карликового божества юности, созидания и возрождения в Новом царстве Египта (1539-750 гг. до н.э.), до телевизионной рекламы газированных безалкогольных напитков, пожалуй, не найти другого такого часто встречающегося расстройства, которое столь широко использовалось бы в иконографии низкорослости. [136]Подобно одноименному недугу, ахондроплазия обусловлена недостатком хондроцитов, путешествующих по ростовой пластинке, но этот дефицит имеет совершенно иное происхождение.
Ахондроплазия вызывается мутацией в рецепторе фибробластного фактора роста (FGF – fibroblast growth factors). FGF – это сигнальные молекулы, входящие в состав молекулярных часов, регулирующих рост конечности зародыша по продольной оси – от ближнего до дальнего ее конца. Однако после рождения FGF, вместо того чтобы способствовать росту конечности, тормозят его.
Мы знаем об этом, потому что 99 процентов всех случаев ахондроплазии обусловлены мутацией, в результате которой одна аминокислота (глицин) в определенном локусе белковой последовательности FGFR3 (позиция 380) замещается другой (аргинином). Эта мутация обладает своеобразным свойством стимулировать повышенную активность молекулы FGFR3. Почти все мутации, которые описаны в этой книге, вызывают дефицит одного из белков, либо количественный, либо качественный, понижая степень его эффективности; нередко мутация служит причиной полного отсутствия белка. Если белок представляет собой сигнальную молекулу, как в случае с FGF, наблюдаемое нарушение будет следствием утраты некоего критического блока информации, который требуется клеткам. Мутация ахондроплазии, однако, отличается в том отношении, что заставляет рецептор передавать сигнал внутрь клетки даже при отсутствии связи с FGF. Вызываемый эффект подобен переключателю, который спонтанно включается, вместо того чтобы быть выключенным, и посылает часть нежелательной информации клеткам растущей конечности. [137]
Если избыток сигнальных молекул FGF заставляет конечности необычно укорачиваться, значит, привычная роль FGF должна состоять в том, чтобы тормозить процесс роста конечности ребенка. Они выполняют эту функцию за счет ограничения скорости деления клеток в ростовой пластинке. Кости ребенка с ахондроплазией имеют ростовые пластинки, по размеру составляющие лишь малую толику того, какими они должны быть. По сравнению со здоровыми детьми в них содержится намного меньше делящихся хондроцитов и еще меньше тех, которые разрастаются и образуют хрящ. [138]
Ахондроплазия – довольно-таки нестрашное нарушение. Однако избыток сигнальных FGF, в своей крайней форме, может вызывать ужасные последствия. В числе многих скелетов амстердамского Музея Фролика есть один, принадлежащий младенцу мужского пола, родившемуся мертвым где-то в начале 1800-х годов. При взгляде на скелет, ныне обозначенный номером М715, сразу становится ясно, что с ним что-то не так. Все до единого позвонки, ребра и тазовые кости ребенка усечены, искривлены или уплощены, а череп неимоверно увеличен. В своем грандиозном тератологическом трактате 1849 года Виллем Фролик описывает лоб ребенка как огромный шишковатый объект. Укороченные конечности и большая голова – оба эти симптома характерны для летальной скелетной дисплазии. Как явствует из самого названия, она приводит к смертельному исходу уже при рождении.
Ахондроплазия. Мэри Эшберри (ум. 1856 г.) с черепом мертворожденного младенца.
Летальная скелетная дисплазия также вызывается активирующими мутациями гена FGFR3, но намного более разрушительного свойства, чем те, которые ответственны за ахондроплазию. Причиняемый ими вред показывает, что семейство FGF контролирует рост не только конечностей, но и некоторых других частей скелета, таких, например, как череп. Слегка напоминающие купол черепа многих карликов с ахондроплазией наводят на мысль о том, что их заболевание является ослабленной версией смертельного недуга. Если ребенок унаследует две копии ахондропластической мутации (имея, к примеру, двух родителей-ахондропластиков), то он умрет вскоре после рождения со всеми симптомами летальной скелетной дисплазии. [139]
FGF – это, должно быть, лишь одна молекула в числе многих, ограничивающих рост той или иной части скелета. Каждый орган должен имеет механизмы, диктующие ему, когда нужно прекращать рост, причем многие из этих механизмов уникальны для конкретного органа. Едва ли существует хоть одна часть тела, которая бы не затормаживала или не ускоряла свой рост в результате того или иного генетического расстройства. Некоторые мутации заставляют детей рождаться с такими большими языками, что они не влезают в рот; в результате других – кишечник не помещается внутри брюшной полости. [140]Даже у мышц есть свои собственные механизмы регуляции роста. Бельгийские коровы специальной мясной породы замечательны тем, что имеют на треть больше мышц по сравнению с обычными коровами. Их бока напоминают ляжки олимпийских чемпионов-тяжелоатлетов. У них отсутствует белок, называемый миостатином (родственный, так уж случилось, молекулам BMP), который приказывает мышцам прекращать рост. У мышей, дефектных по миостатину, мышечная масса в два-три раза больше обычной, но цена этого избыточного роста оплачивается за счет его дефицита в других местах, поскольку внутренние органы у них вырастают меньше нормы. Наверняка существуют и люди с дефектами миостатина, но достоверные свидетельства о них отсутствуют. Возможно, экстра-мускулатура остается незамеченной, а если ее и замечают, то не считают причиной для беспокойства. [141]
Обновление
Ген, ответственный за axoндpоплазию, кодирует некоторую часть матрикса, который продуцируют вокруг себя хондроциты. Но это лишь малая его доля. Действительно, мыши, у которых этот белок полностью удален путем генетического инженеринга, вообще как будто не страдают от вредных последствий таких манипуляций. Можно вообще в первую очередь задаться вопросом, какова роль этого белка в матриксе. Далеко не так обстоят дела с остальным матриксом. Большая часть хряща состоит из коллагена. У людей насчитывается до пятнадцати различных типов коллагена, которые составляют около четверти всего количества белка в организме. Разновидности коллагена обнаруживаются в соединительной ткани и коже. Они соединяют вместе наши клетки. И именно они в значительной степени обеспечивают свойственные кости гибкость и силу.
Мутации, повреждающие костные коллагены, вызывают нарушение, носящее название несовершенного остеогенеза (osteogenesis imperfecta). Существует по крайней мере четыре формы, объединяемые под этим диагнозом, причем некоторые из них заканчиваются летальным исходом в младенчестве. Наиболее характерный симптом этого генетического расстройства – чрезвычайная хрупкость костей у его жертв. По этой причине его также часто именуют болезнью стеклянных костей. Мутации оказывают свое разрушающее воздействие из-за иерархической природы, которой подчиняется структура коллагенов. Любой коллагеновый белок образован тремя пептидами – цепочками аминокислот, свернутыми вместе в тройную спираль. Тройные спирали, в свой черед, группируются вместе, образуя огромные фибриллы, или волокна, которые, сплетаясь вместе, определяют строение соединительной ткани или хряща. Каждый пептид кодируется отдельным геном, но один-единственный мутантный ген может разрушить любое число тройных спиралей и, следовательно, любое число фибрилл, а значит, и костей. [142]