Ступени эволюции интеллекта - Сергеев Борис Федорович (онлайн книги бесплатно полные .txt) 📗
Несмотря на кажущуюся простоту нейронной организации оборонительного рефлекса, она оставляла большой простор для различных предположений, так как, рассуждая теоретически, привыкание могло локализоваться в любой из девяти ключевых точек этой нейронной цепи: в рецепторных клетках (сенсорных нейронах); в синапсах между сенсорными и моторными нейронами, а также между возбуждающими промежуточными нейронами и мотонейронами; благодаря воздействию тормозного промежуточного нейрона на сенсорные нейроны, на возбуждающие интернейроны или мотонейроны; в моторных нейронах, в синапсах между мотонейронами и мышцей, а также в мышце.
Как уже отмечалось, ни в рецепторе, ни в мышце привыкание не возникает. Последовательное изучение остальных «подозрительных» точек позволило отмести еще шесть. Выяснилось, что привыкание развивается в синапсе между сенсорным и моторным нейронами, точнее – в синаптических окончаниях сенсорного нейрона. Оно возникает потому, что с каждым новым импульсом сенсорного нейрона в синапсе выделяется все меньшее и меньшее число квантов медиатора. В результате мотонейрон снижает число генерируемых им импульсов, и в конце концов наступает момент, когда он уже не способен вызвать сокращение жаберной мышцы.
В среде зоопсихологов раньше считали, что если не у каждого вида, то во всяком случае у каждого отряда или класса животных привыкание имеет свой специфический механизм. Сейчас есть веские доказательства, что эти предположения не соответствуют действительности. Природа не столь щедра на выдумки, чтобы для каждого своего «чада» все-все придумывать заново. Она консервативна и, однажды найдя удачное решение, проносит его через всю эволюцию. Однако нельзя ожидать, что привыкание у всех без исключения организмов – от одноклеточных до млекопитающих – развивается одинаковым образом, хотя бы потому, что у инфузории нет и не может быть сенсорных нейронов. И вполне естественно, что у всех животных, уже успевших обзавестись нервной системой, привыкание развивается сходным образом.
Оставим сейчас без внимания кишечнополостных и плоских червей. Что происходит у них при выработке привыкания, выяснить пока невозможно. Для электрофизиологов они являются трудным орешком. Несколько проще обстоит дело с ракообразными. У них имеется несколько гигантских нейронов с отходящими от них гигантскими волокнами. При раздражении хвоста импульсы сенсорных нейронов возбуждают гигантские вставочные нейроны. Их всего два. Благодаря тому что эти нервные клетки соединены между собой электрическим синапсом, они функционируют как единый нейрон. Общими усилиями они активируют гигантский мотонейрон и группу мелких мотонейронов, командующих работой мышц при быстром сгибании хвоста. Привыкание возникает вследствие экстренно развившейся неспособности синапсов сенсорных нейронов возбуждать вставочный нейрон.
У раков не удалось проверить все точки, где теоретически могло бы развиться привыкание. Но нет особых оснований ожидать, что их несколько. А то, что привыкание у них развивается внезапно без постепенного снижения реакции, вовсе не свидетельствует о другом механизме привыкания, как полагают некоторые зоопсихологи. Это свойство не привыкания, а устраняемой реакции. Бегство может осуществиться только при достаточно сильном и резком ударе хвоста. Поэтому данная реакция слабой никогда не бывает. Объясняется эта особенность свойством нервной цепи. Гигантские вставочные нейроны работают по закону «все или ничего», т. е. или вызывают реакцию следующего нейрона в полном объеме, или не вызывают ее совсем. К механизму привыкания это не имеет никакого отношения.
У таракана на заднем конце брюшка находится пара придатков – церки. Если обдуть их струей воздуха, насекомое пустится в бегство. Реакция возникает благодаря поступлению информации от рецепторов церок во вставочные нейроны шестого брюшного ганглия, а оттуда – на моторные нейроны грудных ганглиев, управляющих движениями ног. Благодаря тому что в числе вставочных нейронов есть и гигантские, удалось убедиться, что при выработке привыкания они перестают возбуждаться из-за прекращения передачи в синапсе. Можно думать, что аналогичным образом прерывается распространение возбуждения с сенсорных нейронов и на остальные более мелкие вставочные нейроны. Хотя все точки над «и» еще не поставлены, можно все же считать, что механизм привыкания у насекомых такой же, как и у аплизий.
У позвоночных животных к числу наиболее простых реакций, подверженных привыканию, относится реакция отдергивания лапы в ответ на раздражение кожи. У кошки нервный путь этого рефлекса многоступенчат и сложен, поэтому пока не удалось изучить электрофизиологию всех его звеньев. Оказалось возможным лишь выяснить, что во время выработки привыкания мотонейроны начинают получать все меньше возбуждающих воздействий. Хотя прямые наблюдения пока невозможны, косвенные данные позволяют считать, что и у кошки привыкание выражается в падении эффективности синапса между сенсорным и вставочным нейронами. Аналогичный механизм приписывается и угашению ориентировочного рефлекса.
Мы уже знаем, что привыкание можно уничтожить сильным раздражителем. Это явление получило название дегабитуации – устранения привыкания (габитуация – привыкание). Его механизм разгадали не сразу. Привыкание и самопроизвольное восстановление «приученного» рефлекса обычно рассматривают как две стороны одного и того же процесса, и это вполне закономерно. А что такое дегабитуация? Можно ли предположить, что ее механизм аналогичен самопроизвольному восстановлению рефлекса, только развертывается он стремительно, мгновенно уничтожая следы привыкания, как мокрая тряпка стирает написанные мелом слова? Видимо, нет. Этому противоречит ряд наблюдений. Во-первых, сильный раздражитель не только восстанавливает приученный рефлекс, но даже вызывает его увеличение. Во-вторых, стимул, снимающий эффект привыкания, усиливает рефлекторные ответы множества различных рефлексов, т. е. дегабитуация несколько напоминает сенситизацию, действуя как бы по принципу суммации возбуждения.
Среди зарубежных ученых есть убежденные поклонники привыкания. Среди них особенно выделяется Х.Ф. Харлоу. По его представлениям привыкание лежит в основе всех видов обучения, всех форм психической деятельности и является механизмом образования условных рефлексов. Метод рассуждений Харлоу несложен. Автор исходит из того, что каждый раздражитель способен вызывать практически любую реакцию животного, во всяком случае ориентировочную. Чаще всего она имеет окраску оборонительной реакции, а если животное голодно, то пищевой, т. е. животное изначально обладает потенциальной способностью любым образом реагировать на раздражитель. По мнению Харлоу, при формировании условного рефлекса никаких новых связей не образуется, а с помощью привыкания лишь устраняются неадекватные реакции. Аналогичным образом он объясняет выработку дифференцирования простых и сложных раздражителей, ориентировку в пространстве и абстрактное мышление. Трудно согласиться с точкой зрения Харлоу. Если отнести угашение ориентировочного рефлекса к одной из разновидностей привыкания (а для этого есть достаточно веские основания), то придется признать, что образованию любого рефлекса (пожалуй, кроме запечатления) предшествует фаза угашения ориентировочного или другого рефлекса, возникающего на действие будущего условного раздражителя. Этот процесс особенно удобно проследить у низших животных на моделях условных рефлексов, которые требуют для своего образования 10–20 сочетаний и не сразу становятся прочными.
У речного рака, пересаженного из своего «домашнего» аквариума в экспериментальный манеж, где он уже подвергался болевым воздействиям, тотчас же возникает оборонительный рефлекс на обстановку, проявляющийся в принятии крайне характерной позы: рак приподнимает высоко над грунтом головогрудь, раскрывает клешни и широко разводит их в сторону, готовый в любую минуту дать бой. Чтобы выработать у животного реакцию бегства, экспериментатор должен предварительно угасить реакцию принятия боевой позы. Это подавление безусловнорефлекторной оборонительной реакции, видимо, является не чем иным, как тривиальным привыканием. В дальнейшем выработанный условный оборонительный рефлекс будет находиться в реципрокных отношениях с устраненной путем привыкания безусловнорефлекторной оборонительной реакцией. Угашение условного рефлекса вызывает эффект дегабитуации безусловного рефлекса, а дегабитуация безусловнорефлекторной реакции – торможение условного рефлекса. Пример с раками показывает, что привыкание действительно «расчищает» поле деятельности от всего, что могло бы помешать возникновению условного рефлекса, но дальше требуется акт созидательный – образование нового канала связи, его максимальной активации. Здесь привыкание ничем помочь не может. С этим согласны подавляющее большинство исследователей.