Кошки и гены - Бородин Павел Михайлович (читаем книги онлайн бесплатно txt) 📗
Это тоже пример воздействия разных, неаллельных генов. Называется оно комплементарным, дополнительным действием генов. Эффект одной мутации дополняется эффектом другой. Я специально не даю пока названий мутаций, этому будет посвящена следующая глава.
Выше мы рассматривали случаи, когда за каждый этап формирования признака отвечает только один ген. Однако есть много примеров, когда один и тот же продукт синтезируют разные гены. Мутации в таких повторенных генах также могут увеличивать или уменьшать количество или активность синтезируемого продукта. Результат такой совместной активности генов будет зависеть от того, сколько в генотипе каждого конкретного организма усиливающих и сколько тормозящих аллелей.
Гены, каждый из которых вносит небольшой вклад в формирование признака, называются полигенами, в отличие от олигогенов, или генов главного действия, о которых мы говорили выше. Под контролем полигенов находятся количественные признаки, то есть такие, по которым различия между особями носят не качественный, а количественный характер: не есть — нет, а больше — меньше.
На один признак может действовать много генов. Но может быть и обратная ситуация: один ген действует на много признаков. Обратимся опять к примеру с тирозиназой. Нарушения в синтезе пигмента сказываются не только на цвете шерсти, но и на цвете глаз, поскольку и там, и там есть районы, которые должны быть специфическим образом окрашены. Если же процесс образования пигмента нарушен, то измененными оказываются оба признака. У настоящих альбиносов белая шерсть сочетается с красными глазами, ибо экранирующий пигмент в них отсутствует, и становятся заметными кровеносные сосуды. Так мутация в одном гене сказывается на проявлении двух признаков. Такое множественное действие гена называется плейотропией.
Сколько их - генов у кошки?
Двадцать лет назад я считал, что у кошки 50 000 генов. И был неправ. Тогда генетики сильно переоценивали количество генов у млекопитающих. При этом оценка в 50 000 считалась очень низкой. Многие говорили о 150 000 генов. Разочарование пришло после расшифровки генома человека. Оказалось, что у человека всего около 30 тысяч генов, кодирующих белки. Это гораздо меньше, чем ожидалось.
Когда были расшифрованы геномы других организмов, таких как нематода и плодовая мушка дрозофила, оказалось, что у человека не просто мало, но оскорбительно мало генов: всего в полтора раз больше, чем у нематоды и в два раза больше, чем у дрозофилы. В 2007 году появились первые результаты расшифровки генома кошки. Пока расшифровано примерно 65% кошачьих генов. Сравнение последовательности нуклеотидов в геноме кошки с хорошо исследованными геномами человека, шимпанзе, собаки, коровы, мыши и крысы позволило выявить у кошки 20285 генов. Следовательно, общее число генов кошки, по- видимому, равно числу генов человека - 30 000.
Нужно помнить, однако, что речь здесь идет о генах в традиционном понимании этого слова: то есть об участках ДНК, которые кодируют белки. Применение методов молекулярной генетики к анализу хромосом показало, что они содержат огромное количество многократно повторенных и, по-видимому, не кодирующих белки последовательностей ДНК.
Вы, конечно, знаете, что гены, не болтаются в клетках по отдельности, но организованы в хромосомы.
У кошки 19 пар хромосом. Мы говорили с вами о том, что для обеспечения надежности у всех высших организмов каждый ген представлен как минимум в двух экземплярах, а поскольку гены организованы в хромосомы, то, следовательно, и каждая хромосома должна быть в двух экземплярах. Хромосомы, несущие аллели одних и тех же генов, называются гомологичными хромосомами, или гомологами.
Хромосомы - это сложные комплексы ДНК с различными белками, которые служат для упаковки ДНК. Эти белки выполняют функцию регуляции активности генов: закрывают и плотно упаковывают те гены, которые не должны считываться в данной клетке [зачем нервной клетке печеночные белки?], и наоборот, открывают для считывания те гены, которые несут информацию о строении белков, нужных данной клетке в данный момент.
Плотно упакованные участки легко отличить от свободно лежащих при специфическом окрашивании гистологическими красителями. Поскольку в разных хромосомах находятся разные гены, то и окрашиваются разные хромосомы по-разному. Кроме того, хромосомы отличаются друг от друга по количеству находящихся в них генов, то есть по количеству ДНК, что находит свое цитологическое выражение в разных размерах хромосом.
Легко заметить, что каждая пара, гомологичных хромосом имеет совершенно специфичный рисунок полос. Именно по этому рисунку ее легко отличить от остальных. Вы видите, что каждая хромосома представлена в двух экземплярах. У кошек каждой отдельной хромосоме вы можете найти ее пару. У котов 18 хромосом имеют гомологов, а еще две хромосомы оказываются разными и по размеру, и по характеру полосатости. Это так называемые половые хромосомы. У самок они одинаковые — гомологичные — и называются Х-хромосомами, а у самцов разные. Одна из них Х-хромосома, а другая, гораздо меньшего размера, — Y-хромосома. О роли половых хромосом в определении пола мы поговорим позже. Сейчас же отметим, что остальные хромосомы, кроме половых, называются аутосомами.
Получение наибольшего количества полос, выявление более мелких полос в пределах более крупных позволяет повысить надежность идентификации не только отдельных хромосом, но и районов внутри хромосом. Последнее очень важно, поскольку дает возможность следить за судьбой этих районов при их перемещении по кариотипу (так называется хромосомный набор] в ходе эволюции. Сама эта работа — получение максимальной полосатости — во многом остается искусством. Поэтому тот, кто получит больше полос, считает себя чемпионом и очень этими полосами гордится.
Довольно любопытно было бы узнать, в какой хромосоме и в каком участке ее находится тот или иной ген. Оставим пока в стороне вопрос, зачем нам это знать. (Я вообще считаю этот вопрос глупым. Что значит, зачем знать? Затем, что это неизвестно!]. Разберемся сначала с тем, как это можно узнать.
По распределению полос вы можете легко опознать конкретные хромосомы в гибридных клетках. Например, в клеточных гибридах хомяка с кошкой. Нет, конечно, кошку с хомяком никто не скрещивал. Речь идет именно о клеточных гибридах. Как их получить? Нужно взять культуры фибробластов (активно делящихся клеток соединительной ткани) обоих видов и смешать их. Существуют методы, облегчающие слияние этих клеток друг с другом. Из этого слияния и получаются гибриды клеток, содержащие хромосомы обоих видов: кошки и хомяка. В процессе клеточных делений при культивировании гибридных клеток в питательной среде происходит постепенная утеря тех или иных хромосом. Чьи (кошачьи или хомячьи) и какие именно (первая, вторая или десятая) хромосомы теряются, мы можем установить по специфическому рисунку полосатости оставшихся хромосом.
Что это дает для решения задачи картирования? Допустим, мы обнаружили, что в гибридном клоне №1232 (клоном мы называем группу клеток, которая возникла в результате деления одной- единственной клетки) утеряна Л1-хромосома кошки. Проведя биохимический анализ клеток этого клона, мы установили, что в них присутствует только хомячий вариант фермента эстеразы D, а кошачий утерян. Тогда логично сделать вывод, что именно в Al- хромосоме локализован ген, кодирующий структуру этого фермента.
В последнее время получил распространение и другой подход к картированию. Были выделены или искусственно синтезированы фрагменты ДНК, соответствующие тем или иным генам. Показано, что гены, выполняющие одинаковые функции у разных видов, имеют идентичную или чрезвычайно сходную последовательность оснований в ДНК. Такие гены называют гомологичными. Как можно проверить гомологию двух фрагментов ДНК? Довольно просто. Нам не нужно расшифровывать последовательность каждого' из них. Если последовательности гомологичны, то они в подходящих условиях будут гибридизоваться друг с другом: образовывать двойную спираль гибридной молекулы ДНК. Более того, оказалось, что эти фрагменты могут гибридизоваться и с гомологичными участками ДНК в фиксированных хромосомах прямо на предметном стекле. Именно на этой особенности базируется метод картирования хромосом гибридизацией с генами, мечеными радиоактивными изотопами.