Новая история происхождения жизни на Земле - Киршвинк Джозеф (лучшие книги читать онлайн бесплатно без регистрации TXT) 📗
У жизни есть усложненность и организация. На самом деле простой жизни — даже если она состоит из горстки (несколько миллионов) атомов — не существует. Все жизненные формы состоят из огромного числа атомов, упорядоченных самым замысловатым образом. Вот эта организация сложных систем и есть отличительная черта жизни: усложненность — не механизм, а свойство.
Жизнь воспроизводит себя. Дэвис уточняет, что жизнь должна не только создавать свои копии, но также воссоздавать механизм, позволяющий продолжать дальнейшее копирование. Как замечает Дэвис, жизнь также должна включать в себя копию копировального аппарата.
Жизнь развивается. Как только сделана копия, жизнь продолжает изменения — назовем это развитием. Это совершенно не механический процесс. Машины не растут, не меняют форму и тем более функцию вместе с ростом.
Жизнь эволюционирует. Это одно из основополагающих свойств жизни, неотъемлемое от ее существования. Дэвис описывает эту характеристику как парадокс постоянства и изменения. Гены должны воспроизводиться, а если они не могут этого делать с достаточной регулярностью, то организм умрет. А с другой стороны, если воспроизводство идеально, не будет изменчивости и не будет эволюции путем естественного отбора. Развитие — ключ адаптации, а без адаптации невозможна и жизнь.
Жизнь автономна. Эта характеристика, возможно, самая сложная для определения, хотя для жизни — основная. Организм автономен, то есть самоопределяется, может жить без постоянного воздействия со стороны других организмов. Но то, как эта автономность создается из множества частей и систем организма, по-прежнему остается загадкой.
Действие и сложное строение — одно и то же для живой системы, то есть деятельность системы состоит из непрерывного производства (и воспроизводства: белок живет не более двух дней) всех процессов и компонентов, которые объединяют все в одну производственную единицу. С этой точки зрения именно постоянное воспроизведение и обновление жизненных форм и есть сама жизнь.
Конечность, временный характер этого жизненного цикла молекул — самый важный момент для жизни в целом — недооценивался как главный ключ к пониманию того, где первая жизнь могла зародиться. Определение жизни, которое дают специалисты NASA и которое основано на любимом изречении Карла Сагана, весьма простое и заключается в следующем: «Жизнь есть химическая система, способная к дарвинистской эволюции» [45]. Здесь есть три опорных понятия. Во-первых, мы имеем дело с химическими веществами, не только с энергией.
Во-вторых, имеются в виду не просто вещества, но химические системы. Таким образом, между веществами происходит взаимодействие, они существуют не сами по себе. Наконец, речь идет о химических системах, которые обязательно подвергаются дарвинистской эволюции. Это означает, что в мире индивидов намного больше, чем запасов энергии, которая их обеспечивает — то есть некоторые умрут. Те, кто останется, выживут потому, что они являются носителями выигрышных унаследованных качеств, которые передадутся их потомкам, и, значит, обеспечат им большую способность к выживанию. Такое определение NASA/Сагана хорошо тем, что не смешивает понятия «жизнь» и «быть живым».
Что за сила соединила мертвые химические вещества так, чтобы они стали живыми? Была ли эта сила метаболизмом, а к ней уже добавилась способность к воспроизведению, или, может, все было наоборот? Если первыми являлись примитивные метаболические системы, то они обязательно должны были иметь какую-нибудь закрытую клеткообразную оболочку, и в дальнейшем у них должна была появиться способность порождать и содержать в себе молекулу, несущую информацию. А если сначала появились порождающие молекулы (такие как РНК или их варианты), то потом им необходимо было заиметь энергетическую систему, которая бы поддерживала процесс воспроизведения и позднее приобрела бы оболочку. Вот как противоречива эта проблема первичности метаболизма и воспроизводства, поставленная на химическом/молекулярном уровне: первым был белок? или полинуклеотид? Оба ли они живые? И какой путь каждому пришлось пройти от просто химических реакций до той реакции, которая породила жизнь? И если основополагающей характеристикой для живой клетки является поддержание равновесия системы, гомеостаз (то есть предполагается, что поддерживаются более-менее устойчивые химические реакции в постоянно меняющемся окружающем пространстве), то следует, что первым должен быть метаболизм. Насыщение перед размножением кажется более приемлемым положением вещей на сегодняшний день, но что касается происхождения жизни, вопросы остаются.
Энергия и определение жизни
Теперь следует рассмотреть, какую роль играет в поддержании жизни энергия. Мы определили жизнь как нечто, наделенное метаболизмом, способностью к воспроизведению и эволюционированию. Но давайте не будем рассматривать жизнь и в отрыве от энергетических потоков и преемственности порядка/беспорядка. Ясно, что для жизни недостаточно просто обладать энергией, должно быть какое-то энергетическое взаимодействие, а взаимодействие это необходимо на всех основных уровнях, чтобы поддерживать состояние неравновесной упорядоченности. Без энергии жизнь преобразуется в не-жизнь — таким образом, определение жизни не обойдется без учета поглощения и выделения энергии. Чтобы сохранить себя, жизнь стремится к состояниям, позволяющим ей постоянно укреплять свою упорядоченность через включенность в энергетические потоки. Наш тип жизни обеспечивает себя относительно малым количеством комбинаций углерода, кислорода, азота и водорода с включением некоторых других элементов в еще меньшем объеме. Таким образом возникает и существует именно та степень усложненности и взаимопроникновения, которую мы называем «жизнь». Входящий поток энергии должен быть достаточно сильным, чтобы преодолеть тенденцию химических процессов к возвращению к равновесию, то есть превратиться из живых в неживые.
То, что жизнь сопровождается обменом веществ, является одним из фундаментальных аспектов определения жизни. Для жизни на Земле первичными источниками энергии стали жар подземных недр и тепло солнечного света, последнее само по себе есть энергия — результат солнечных термоядерных реакций. Наиболее общий способ получения энергии от Солнца — фотосинтез. В этом процессе солнечный свет дает энергию для преобразования углекислоты и воды в углеродные соединения со многими химическими связями, накапливающие энергию. При распаде этих связей энергия высвобождается. Жизнь на Земле использует большое разнообразие биохимических реакций, все они включают перенос электронов. Но эта система работает, только если есть так называемый электрохимический градиент. Чем круче падение градиента, тем больше энергии высвобождается. Это означает, что некоторые типы метаболизма вырабатывают больше энергии, чем другие. Так же, как некоторые среды потребляют энергии больше прочих. Органические, углеродосодержащие соединения, обладающие наибольшим количеством сохраненной энергии, — это жиры и липиды, длинные углеродные цепочки, хранящие много энергии в своих химических связях.
Обмен веществ — это сумма всех химических реакций в организме. Вот вирус — он очень мал, типичные вирусы не более 50–100 нанометров в диаметре (учтем, что нанометр равен 10–9 м). Делятся вирусы на две группы: одни заключены в белковую оболочку, другие имеют и белковую оболочку, и дополнительное покрытие вроде мембраны. Внутри этих оболочек находится самая важная часть вируса — его геном, нуклеиновая кислота. В одних это ДНК, в других — только РНК. Число генов также сильно различается: от трех (например, оспа) до более чем 250 отдельных генов. Существует огромное количество вирусов, и если бы они считались живыми организмами, то заняли бы очень большое место в биологической классификации. Но вообще-то их относят к неживой природе.