Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗
Что касается меня, то должен сказать, что я вообще не нахожу эту точку зрения сколько-нибудь удовлетворительной. И дело здесь не столько в исключительной расточительности такой картины мира — хотя это и само по себе уже достаточно подозрительно, если не сказать больше. Более серьезное возражение состоит в том, что концепция множественности миров не дает настоящегорешения «проблемы измерения», т.е. не достигает цели, ради которой была создана.
Решить проблему квантового измерения— значит понять, каким образом макроскопическое поведение в U-эволюционирующих квантовых системах порождает (или эффективнопорождает) в качестве своего свойства процедуру R. Эта проблема не решается простым указанием на возможный сценарий, предположительно допускающий R-подобное поведение. Необходима теория, позволяющая хоть как-то понять, какие именно обстоятельствавызывают к жизни процедуру R(или, на худой конец, ее иллюзию). Более того, необходимо найти объяснение той замечательной точности, с которой работает процедура R. Судя по всему, люди склонны полагать, что вся точность квантовой теории заключена в ее динамических уравнениях — в эволюции U. Однако и редукция Rсама по себе ничуть не менее точна в предсказании вероятностей, и до тех пор, пока мы не поймем, каким образом ей это удается, удовлетворительной теории у нас не будет.
Поскольку ничего большего концепция множественности миров не предлагает, действительного и исчерпывающего объяснения ни одному из этих феноменов мы не получаем. В отсутствие теории, описывающей, каким образом «воспринимающее сознание» разделяет мир на ортогональные альтернативы, у нас нет никаких причин ожидать, что такое сознание не будет способно осознавать линейные суперпозиции совершенно различных состояний теннисных мячей или, скажем, слонов. (Следует отметить, что одна лишь ортогональность«воспринимаемых состояний» — например, состояний | Ψ Д〉 и | Ψ Н〉 в приведенном выше примере — никоим образом не помогает эти состояния разделить. Сравните, например, пару состояний | L←〉 и | L→〉 с парой | L↑〉 и | L↓〉, которыми мы пользовались при обсуждении ЭПР-феноменов в §5.17. Обе пары состояний ортогональны, точно так же как ортогональны состояния | Ψ Д〉 и | Ψ Н〉, однако выбрать одну пару в ущерб другой мы не можем.) И еще одно: концепция множественности миров никак не объясняет чрезвычайную точность того удивительного правила, которое чудесным образом превращает квадраты модулей комплексных весовых коэффициентов в относительные вероятности {74} . (См. также §§6.6и 6.7.)
6.3. Не принимая вектор | ψ〉 всерьез
Существует много различных вариантов точки зрения, согласно которой вектор состояния | ψ〉 не следуетрассматривать как действительное отображение той или иной физической реальности, существующей на квантовом уровне. Вектор | ψ〉 вводится лишь в качестве вычислительного приема, удобного исключительно для вычисления вероятностей, либо служит для выражения «состояния знания» экспериментатора о физической системе. Иногда под | ψ〉 понимается не состояние индивидуальной физической системы, но целый ансамбльвозможных подобных физических систем. Часто утверждают, что поведение вектора сложносцепленного состояния | ψ〉 ничем, с практической точки зрения( for all practical purposes [42], или просто FAPP с легкой руки Джона Белла {75} ), не отличается от поведения такого ансамбля физических систем — а большего о проблеме измерения физикам знать и не нужно. Иногда можно услышать, что вектор | ψ〉 не может описывать какую бы то ни было квантовую реальность, так как понятие «реальность» к феноменам квантового уровня неприменимо — оно теряет здесь всякий смысл, поскольку реальным является лишь то, что можно «измерить».
Многие (в том числе и я — а также Эйнштейн и Шрёдингер, так что компания подобралась очень даже неплохая), впрочем, убеждены, что ничуть не больше смысла в ограничении «реальности» лишь объектами, которые мы способны воспринять — например, при помощи измерительных устройств (некоторых из них, по крайней мере), — и лишении «права на реальность» объектов, существующих на более глубоком, более фундаментальном уровне. Я не сомневаюсь, что мир на квантовом уровне выглядит странно и непривычно, но он отнюдь не становится от этого «нереальным». В самом деле, разве могут реальные объекты состоять из нереальных компонентов? Более того, управляющие квантовым миром математические закономерности замечательно точны — ничуть не менее точны, нежели более привычные уравнения, описывающие поведение макроскопических объектов, — несмотря на все те туманные образы, с которыми в нашем сознании ассоциируются «квантовые флуктуации» и «принцип неопределенности».
Однако убежденность в том, что хоть какая-то реальность должна существовать и на квантовом уровне, не избавляет нас от сомнений в возможности точно описать эту самую реальность посредством вектора состояния | ψ〉. В доказательство «нереальности» | ψ〉 выдвигаются самые различные аргументы. Во-первых, вектор | ψ〉, по всей видимости, вынужден время от времени претерпевать этот загадочный нелокальный разрывный «скачок», который я обозначаю здесь буквой R. Несколько неподобающее поведение для физически приемлемого описания мира, особенно если учесть, что у нас уже имеется изумительно точное и непрерывное уравнение Шрёдингера U, согласно которому, как предполагается, и эволюционирует вектор | ψ〉 (большую часть времени). Однако, как мы успели убедиться, эволюция Uсама по себе заводит нас в дебри сложностей и неясностей множественно-мировых интерпретаций; если же мы хотим получить картину, сколько-нибудь адекватно описывающую реальную Вселенную, которая, как нам представляется, нас окружает, то нам просто необходима какая-никакая процедура R.
Другое нередко выдвигаемое возражение против реальности вектора | ψ〉 сводится к следующему: чередование U, R, U, R, U, R, …, представляющее собой, в сущности, типичное описание процесса в квантовой теории, не симметрично во времени (каждое U-действие начинаетсяс процедуры R, но не завершается ею), и существует другое, полностью эквивалентное первому описание, в котором U-эволюции обращены во времени (см. НРК, с. 355, 356; рис. 8.1, 8.2). Почему первое описание соответствует «реальности», а второе нет? Есть мнение, что всерьез следует принимать обаописания (как прямую, так и обратную эволюцию вектора состояния) — они сосуществуют и дают в совокупности полное описание физической реальности (см. [ 61], [ 381] и [ 2]). Я склонен думать, что предположения эти, скорее всего, не лишены серьезных оснований, однако в настоящий момент мы на них останавливаться не будем. Мы вкратце коснемся их (и некоторых других родственных им) ниже, в §7.12.
Одно из наиболее частых возражений против принятия вектора | ψ〉 всерьез в качестве описания реальных процессов состоит в том, что его нельзя непосредственно «измерить» — в том смысле, что не существует экспериментального способа определить вектор состояния (пусть и с точностью до коэффициента пропорциональности), если мы об этом состоянии ничего не знаем. Возьмем для примера атом со спином 1/2. Вспомним ( §5.10, рис. 5.19), что каждое возможное состояние спина такого атома характеризуется каким-то конкретным направлением в обычном пространстве. Однако если мы не имеем ни малейшего понятия, что это за направление, определить его мы никак не сможем. Мы можем лишь выбрать какое-либо одно направление и выяснить, в этом направлении ориентирована ось спина ( ДА) или же в противоположном ( НЕТ). Каким бы ни было начальное состояние спина, соответствующее направление в гильбертовом пространстве проецируется либо в ДА-пространство, либо в НЕТ-пространство; каждый исход реализуется с вполне определенной вероятностью. И тут мы теряем большую часть информации о том, каким было «действительное» начальное состояние спина. Все, что мы можем получить из измерения направления спина (в случае атома со спином 1/2), укладывается в один бит информации (ответ на общий вопрос — ДАили НЕТ), тогда как возможные состояния направления оси спина образуют континуум, для точного определения которого потребуется бесконечное количество битов информации.