Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Философия » Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗

Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗

Тут можно читать бесплатно Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Мне могут возразить, что «измерение» детектора, которое наш физик намерен произвести, состоит всего лишь в том, чтобы узнать, какой результат из двух ( ДАили НЕТ) этот самый детектор зафиксировал — или, как в примере с кошкой, выяснить, мертва она или жива. (Вспомним и о наблюдателе из предыдущего параграфа, который собирался всего лишь определить, вверх направлена ось спина правой частицы или вниз.) Для такого измерения матрица плотности и в самом деле дает верные значения вероятностей, в каком бы виде мы ее ни представили. А вот тут начинаются проблемы. Почему мы должны считать таким измерением простой взглядна кошку? В U-эволюции квантовой системы нет ни единого правила, запрещающего нашему сознанию в процессе «разглядывания» и, как следствие, восприятияквантовой системы осознавать комбинации вроде «кошка мертва плюс кошка жива». Так! Здесь мы, кажется, уже проходили. Что такое сознание? Как на самом делеустроен наш мозг? Ведь первой и самой очевидной причиной поисков FAPP-объяснения процедуры Rкак раз и было желание избежать необходимостисвязываться с такого рода вопросами!

Кто-то скажет: все дело в том, что мы выбрали для нашего примера нехарактерный особый случай с двумя равными вероятностями 1/2 и 1/2 (случай «вырожденных собственных значений»). Только в таких ситуациях матрица плотности допускает более одного представления в виде взвешенной вероятностной комбинации взаимно ортогональныхальтернатив. Это ограничение не существенно, поскольку для интерпретации матрицы плотности как комбинации вероятностей ортогональность альтернатив непременным требованием не является. Более того, как показали в своей недавней работе Хьюстон, Йожа и Вуттерс [ 210], в ситуациях, подобных вышеописанным (т.е. там, где матрица плотности вводится потому, что рассматриваемая система сцеплена с какой-то другой изолированной системой), для любой комбинации вероятностей альтернативных состояний, выбранной вами для составления матрицы плотности, всегда найдется измерение, выполнимое в той самой изолированной системе, которое даст в точности такое же представление матрицы плотности. Как бы то ни было, одно то, что неоднозначность возникает уже в случае равныхвероятностей, ясно показывает, что для описания действительныхальтернативных состояний нашего детектора матричного представления недостаточно.

Итак, одно лишь знание матрицы плотности D не даетникаких оснований полагать, что система представляет собой вероятностную комбинацию тех самых состояний, которые эту конкретную матрицу D составляют. Точно такую же матрицу D можно получить и из множества других самых различных комбинаций состояний, большая часть которых окажутся совершенно «абсурдными» с точки зрения здравого смысла. Более того, такая неоднозначность свойственна любой матрице плотности, какую ни возьми.

Стандартные рассуждения не часто заходят дальше требования «диагональности» матрицы плотности. «Диагональной», по сути, является такая матрица плотности, которую можно выразить в виде взвешенной вероятностной комбинации взаимно ортогональныхальтернатив — точнее, не всяких альтернатив, а тех классических альтернатив, которые нас в данном случае интересуют. (Если убрать это последнее условие, то диагональными окажутся все матрицы плотности!) Однако мы уже убедились, что один лишь факт «выразимости» матрицы плотности в таком виде сам по себе отнюдь не является гарантией того, что детекторы не предстанутперед нами в какой-нибудь «абсурдной» квантовой суперпозиции состояний ДАи НЕТ.

Таким образом, вопреки всем и всяческим уверениям, стандартное рассуждение не объясняет, как то или иное приближенное описание U-эволюции в условиях неустранимого воздействия окружения порождает «иллюзию» процедуры R. Оно демонстрирует всего лишь, что в такой ситуации процедура Rи U-эволюция могут мирно сосуществовать. Нам все еще нужно в квантовой теории место для процедуры R, отличное от того, что занимает U-эволюция (по крайней мере, пока не появится теория, жестко предписывающая, какого рода состояния способны воспринимать существа, обладающие сознанием).

Отыскание такого места само по себе важно для общей непротиворечивости квантовой теории. Однако не менее важно понять, что это сосуществование и эта непротиворечивость имеют статус скорее практического приближения (FAPP), нежели строго научный. В конце предыдущего параграфа мы говорили о том, что описание правой частицы посредством матрицы плотности является адекватным лишь в отсутствие возможности сравнения измерений, выполненных на обоихчастицах. Если же такая возможность есть, то необходимо рассматривать полное состояние системы с ее квантовыми, а не просто взвешенно-вероятностными суперпозициями. Аналогичным образом, матричное описание детектора в настоящем параграфе адекватно лишь в том случае, если отсутствует возможность детально измерить состояние окружения и сравнить результаты измерения с результатами наблюдения детектора экспериментатором. Редукция Rможет сосуществовать с эволюцией Uисключительно при условии, что мельчайшие элементы окружения останутся недоступными измерению, а тонкие эффекты квантовой интерференции, надежно укрытые (согласно стандартной квантовой теории) невообразимой сложностью точного описания окружения, избегнут наблюдения.

Очевидно, что какая-то (и даже немалая) доля правды в стандартном объяснении есть, однако полным оно быть никак не может. Разве можем мы быть уверены в том, что в ближайшем будущем не появится какая-нибудь новая технология, с помощью которой все эти интерференционные феномены будут детально описаны? Необходимо ввести некое строгое физическое правило, определяющее, какие из экспериментов, невозможных сегодня практически, являются невозможными в принципе. Согласно такому правилу, должен существовать некий уровень физических процессов, получение каких бы то ни было данных об эффектах интерференции на котором невозможно в принципе. Придется, по всей видимости, постулировать некий новый физический феномен, благодаря которому комплексно-взвешенные суперпозиции физики квантового уровня действительностанут классическими альтернативами, а не просто будут считаться таковыми в FAPP-приближении. В существующем же виде FAPP-подход не дает картины действительной физической реальности. Он не может быть ничем иным, как временной полумерой в отсутствие настоящей физической теории — хотя и весьма полезной, надо сказать, полумерой, — и важно иметь это в виду, когда мы будем рассматривать выдвигаемые мною в §6.12предположения.

6.7. FAPP-объяснение правила квадратов модулей

В предыдущих трех параграфах неявно присутствовало одно далеко идущее допущение, к которому я намеренно не привлекал излишнего внимания. Одна лишьнеобходимость такого допущения эффективно аннулирует любое предположение о том, что из U-эволюции можно вывестиправило квадратов модулей для процедуры R— даже в FAPP-приближении. Уже самим фактом использования матрицы плотности мы неявно допускаем, что взвешенная вероятностная комбинация может быть описана таким объектом вполне адекватно. Уже сама уместность использования выражений вроде 〉〈 α|(которые, в свою очередь, принадлежат к виду «объект, умноженный на собственное комплексное сопряженное») определенно намекает на присутствие где-то рядом правила квадратов модулей. Правило получения значений вероятности из матрицы плотности корректно сочетает классические и квантовые вероятности только потому, что правило квадратов модулей встроенов саму концепцию матрицы плотности.

Хотя процесс унитарной эволюции ( U) действительно очень хорошо стыкуется (математически) с концепциями матрицы плотности и скалярного произведения 〈 α|β〉 в гильбертовом пространстве, это вовсе не означает, что вычисляемые с помощью квадратов модулей величины непременно являются  вероятностями. То есть речь снова идет о сосуществовании Rи U, а не об объяснении происхождения Rиз U. Унитарной эволюции абсолютно ничего не известно о понятии вероятности. То, что квантовые вероятности можно вычислять с помощью этой процедуры, совершенно очевидно является дополнительнымдопущением, вне зависимости от того, каким образом мы пытаемся обосновать взаимоотношения процедур Rи U— привлекая к делу множественность миров или используя FAPP-подход.

Перейти на страницу:

Пенроуз Роджер читать все книги автора по порядку

Пенроуз Роджер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Тени разума. В поисках науки о сознании отзывы

Отзывы читателей о книге Тени разума. В поисках науки о сознании, автор: Пенроуз Роджер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*