Новая философская энциклопедия. Том третий Н—С - Коллектив авторов (читать книги онлайн полностью без регистрации .txt) 📗
24
НАУКА Переход от преднауки к собственно науке был связан с новым способом формирования идеальных объектов и их связей, моделирующих практику. В развитой науке они черпаются не только непосредственно из практики, но преимущественно создаются в качестве абстракций, на основе ранее созданных идеальных объектов. Построенные из их связей модели выступают в качестве гипотез, которые затем, получив обоснование, превращаются в теоретические схемы изучаемой предметной области. Так возникает особое движение в сфере развивающегося теоретического знания, которое начинает строить модели изучаемой реальности как бы сверху по отношению к практике с их последующей прямой или косвенной практической проверкой. Благодаря новому методу построения знаний наука получает возможность изучить не только те предметные связи, которые могут встретиться в сложившихся стереотипах практики, но и исследовать изменения объектов, которые в принципе могла бы освоить развивающаяся цивилизация. С этого момента кончается этап преднауки и начинается наука в собственном смысле. В ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания — теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Меняется и категориальный статус знаний — они могут соотноситься уже не только с осуществленным опытом, но и с качественно иной практикой будущего, а поэтому строятся в категориях возможного и необходимого. Знания уже не формулируются только как предписания для наличной практики, они выступают как знания об объектах реальности «самой по себе», и на их основе вырабатывается рецептура будущего практического изменения объектов. Можно выделить три основных этапа формирования науки в собственном смысле слова. Переход от преднауки к собственно науке исторически первой осуществила математика. По мере ее эволюции числа и геометрические фигуры начинают рассматриваться не как прообраз предметов, которыми оперируют в практике, а как относительно самостоятельные математические объекты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое исследование, в ходе которого из ранее изученных чисел и геометрических фигур строятся новые идеальные объекты. Применяя, напр., операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа (при вычитании из меньшего числа большего). Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путем создает новое знание, характеризующее ранее не исследованные структуры действительности. В дальнейшем происходит новое расширение класса чисел: применение операции извлечения корня к отрицательным числам формирует новую абстракцию — «мнимое число». И на этот класс идеальных объектов опять распространяются все те операции, которые применялись к натуральным числам. Аналогично, сравнение и преобразование геометрических фигур приводит к выявлению их свойств и отношений, которые превращаются в фундаментальные абстракции геометрии (точка, линия, плоскость, угол и т. п.). Их связи и свойства выражают постулаты, на основе которых была создана первая математическая теория — Евклидова геометрия. Дальнейшее изучение признаков геометрических объектов путем применения к ним различных операций преобразования приводит к построению различных теоретических систем геометрии (неевклидовы геометрии, проективная геометрия, топология и т. п.). Вслед за математикой способ теоретического познания, основанный на движении мысли в поле теоретических идеальных объектов, утвердился в естествознании. Здесь он известен как метод выдвижения гипотез с их последующим обоснованием опытом. Опытная проверка осуществляется посредством эксперимента, наблюдения и измерения, целе- направляемых теоретическими знаниями. Самостоятельное экспериментальное исследование лишь относительно автономно, оно всегда определено постановкой проблем и задач, возникающих как результат теоретического осмысления предшествующих фактов и формирования теоретического видения исследуемой реальности. Наконец, в качестве третьего этапа развития науки в собственном смысле слова следует выделить формирование технических наук как своеобразного опосредующего слоя знания между естествознанием и производством, а затем становление социальных и гуманитарных наук. В этих областях научного познания также возникает слой особых теоретических идеальных объектов, оперирование которыми позволяет объяснять и предсказывать феномены изучаемой предметной области. Каждый из этапов развития науки имел свои социокультурные предпосылки. Первые относительно развитые образцы теоретических знаний математики возникли в контексте культуры античного полиса, с присущими ей ценностями публичной дискуссии, демонстрациями доказательства и обоснования как условиями получения истины. Полис принимал социально значимые решения на основе конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство. Идеал обоснованного знания, отличного от мнения, получил свое рациональное осмысление и развитие в античной философии. В ней особое влияние уделялось методам постижения и развертывания истины (диалектике и логике). Первые шаги к разработке диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Развитие логики в античной философии также было тесно связано с поисками критериев правильного рассуждения в ораторском искусстве, и вырабатываемые здесь нормативы логического следования были применены к научному рассуждению. Применение идеала обоснованного и доказанного знания в области математики утвердило новые принципы изложения и трансляции знании. Именно в греческой математике доминирует изложение знаний в виде теорем: «дано — требуется доказать — доказательство». Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь обнаруживаются только нормативные рецепты решения задач, излагаемые по схеме: «Делай так!»... «Смотри, ты сделал правильно!». Некоторые знания в математике Древнего Египта и Вавилона, напр., такие, как алгоритм вычисления объема усеченной пирамиды, по-видимому, не могли быть получены вне процедур вывода и доказательства (М. Я. Выгодский). Однако в процессе изложения знаний этот вывод не демонстрировался. Производство и трансляция знаний в культуре Древнего Египта и Вавилона закреплялись за кастой жрецов и чиновников и носили авторитарный характер. Обоснование знания путем демонстрации доказательства не превратилось в этих культурах в идеал построения знаний, что наложило серьезные ограни-
25
НАУКА чения на процесс превращения «эмпирической математики» в теоретическую науку. Античные философы, выработав необходимые средства для перехода к теоретическому пути развития математики, предприняли многочисленные попытки систематизировать математические знания, добытые в древних цивилизациях, путем применения процедуры доказательства (Фалес, пифагорейцы, Платон). Этот процесс завершился в эпоху эллинизма созданием первого образца развитой научной теории — Евклидовой геометрии (3 в. до н.э.). Естествознание, основанное на соединении математического описания природы с ее экспериментальным исследованием, формировалось в результате культурных сдвигов, осуществившихся в эпоху Ренессанса и перехода к Новому времени. Идея эксперимента как метода познания и проверки истинности научных суждений могла утвердиться только при наличии следующих мировоззренческих установок. Во-первых, понимания субъекта познания как противостоящего природе и активно изменяющего ее объекты. Во-вторых, рассмотрения результатов эксперимента, которые представляют собой продукт искусственного, человеком сотворенного, как принципиально неотличимого от естественных природных состояний; представления о том, что экспериментальное вмешательство в протекание природных процессов создает феномены, подчиненные законам природы, и выявляет действие этих законов. В-третьих, рассмотрения природы как закономерно упорядоченного поля объектов, где индивидуальная неповторимость каждой вещи как бы растворяется в действии законов, которые управляют движением и изменением качественного многообразия вещей и одинаково действуют во всех точках пространства и во все моменты времени. Все эти мировоззренческие установки, предполагающие особые смыслы фундаментальных универсалий культуры (природы, человека, пространства и времени, деятельности, познания), складывались в эпоху становления базисных ценностей техногенной цивилизации, но они не были присущи традиционалистским культурам. Их не было ни в античности, ни в европейском средневековье. Напр., в античной культуре природа рассматривалась как целостный живой организм, в котором отдельные части — вещи имеют свои назначения и функции. Поэтому полагалось, что для познания органической целостности космоса необходимо понять индивидуальную качественную специфику каждой вещи и каждой качественно специфической сущности, воплощенной в вещах. Вечное движение космоса рассматривалось как воспроизводство гармонии целого, космос одновременно мыслился и как подвижный, изменчивый, и как некоторое скульптурное целое, где части, дополняя друг друга, создают завершенную гармонию. С этой точки зрения насильственное препарирование частей мироздания, в несвободных, несвойственных их естественному бытию условиях, не в состоянии обнаружить гармонию космоса. В античной культуре знание об искусственном («тэхне») противопоставлялось знанию о естественном («фюсис»). Познание космоса понималось как постижение его гармонии в умозрительном созерцании, которое расценивалось как главный способ достижения истины. Поэтому даже когда античная наука в эпоху эллинизма вплотную, подошла к соединению математического описания природы с экспериментом (Архимед, Герон, Папп), она не сделала решающего шага к конституированию эксперимента как способа познания природы. Этому препятствовали фундаментальные мировоззренческие смыслы, определявшие специфику античной культуры. Становление мировоззренческих предпосылок, необходимых для утверждения метода эксперимента в науке, было связано с духовной революцией эпохи Ренессанса и Реформации: с новым (по сравнению со средневековьем) пониманием человека не просто как божьей твари, но как творца, продолжающего в своих делах акты божественного творения; с отношением к любой деятельности, а не только к интеллектуальному труду как к ценности и источнику общественного богатства; с возникновением понимания природы как поля приложения человеческих сил; с формированием представлений об искусственном как особом выражении естественного и т. д. Третья важная веха развития науки — становление технических, а затем социальных и гуманитарных наук была связана с эпохой индустриализма, с усиливающимся внедрением научных знаний в производство и возникновением потребностей научного управления социальными процессами. В этот исторический период интенсивное развитие промышленного производства порождает потребности в изобретении и тиражировании все новых инженерных устройств, что создает стимулы и предпосылки становления технических наук. Вместе с тем индустриальное развитие приводит к относительно быстрым трансформациям социальных структур, разрушению традиционных общинных связей, вытесняемых отношениями «вещной зависимости» (К. Маркс). Создаются новые типы социальных общностей, становящиеся объектами социального управления. Возникают условия и потребности в выяснении способов рациональной регуляции стандартизируемых функций и действий индивидов, включаемых в те или иные социальные группы. В контексте этих социальных потребностей и возникают первые программы построения наук об обществе (К. А. Сен-Симон, О. Конт, К. Маркс). Вначале мыслилось построить социальные науки как простое продолжение естественных наук (программа Сен-Симона и Конта, трактовавшая социологию как «социальную физику» и ориентированная на поиск законов общества, аналогичных закону всемирного тяготения). Затем была выявлена специфика социальных объектов как исторически развивающихся (органических) систем (первые шаги в этом направлении были сделаны уже Контом, затем Спенсером; существенным вкладом стала разработка Марксом применительно к социальному познанию методологии исследования сложных, исторически развивающихся систем). Формирование гуманитарных наук, основными объектами которых становятся состояния культуры, духовные феномены, запечатленные в текстах, сопровождалось выявлением ряда специфических процедур их исследования (отнесение к ценностям, понимание, идеографический метод, нарративные описания и т. д.). Выявление этих особенностей породило противопоставление «наук о природе» и «наук о духе» (Риккерт, Виндельбанд, Дильтей, Вебер), которое имело определенные основания в науке 19 и нач. 20 в. (но в современной науке демаркация между естественными и гуманитарными науками уже не носит жесткого характера). На каждом из этапов развития научное познание усложняло свою организацию. Во всех развитых науках складываются уровни теоретического и эмпирического исследования со специфическими для них методами и формами знания (основными формами теоретического уровня знаний выступает научная теория и научная картина мира; эмпирического уровня —данные наблюдения и научный факт). Формируется дис-