Хаос и структура - Лосев Алексей Федорович (книги онлайн бесплатно серия .txt) 📗
Хорошо помня эту заповедь против методологического абсолютизма, мы без вреда для дела и без всякой опасности метафизического гипостазирования можем приступить к системе логики бесконечно–малых. И мы надеемся, что под руководством марксистско–ленинской теории эта инфинитезимальная логика в своем систематическом виде будет построена у нас в ближайшем будущем.
НЕКОТОРЫЕ ЭЛЕМЕНТАРНЫЕ РАЗМЫШЛЕНИЯ К ВОПРОСУ О ЛОГИЧЕСКИХ ОСНОВАХ ИСЧИСЛЕНИЯ БЕСКОНЕЧНО-МАЛЫХ
I. ЛОГИКА ИСЧИСЛЕНИЯ БЕСКОНЕЧНО–МАЛЫХ КАК ОТРАЖЕНИЕ СОЦИАЛbНОЙ ДЕЙСТВИТЕЛbНОСТИ [219]
1. Вступительные замечания. «Теоретическое мышление каждой эпохи, — пишет Энгельс (Диал. прир. 1941, 24), — а значит и нашей эпохи, это—исторический продукт, принимающий в различные времена очень различные формы и вместе с тем очень различное содержание. Следовательно, наука о мышлении, как и всякая другая наука, есть историческая наука, но об историческом развитии человеческого мышления». «Теория законов мышления, — продолжает там же Энгельс, — не есть вовсе какая–то раз и навсегда установленная «вечная истина», как это связывает со словом «логика» философская мысль». «Знакомство с ходом исторического развития человеческого мышления, с выступавшими в различные времена воззрениями на всеобщие связи внешнего мира необходимо для теоретического естествознания потому, что оно дает масштаб для оценки выдвигаемых им самим теорий». Из этих рассуждений Энгельса с необходимостью вытекает то, что и математика вовсе не есть наука только о вечных истинах, что ее истина исторически обусловлена, исторически меняется и логика, желающая осознать основы математического мышления, должна учитывать историческо–социальные типы и стили этого мышления, чтобы не впасть в филистерство.
Тем не менее математику почти все считают чем–то временным и над–историческим. Религию, искусство, науку, философию мы умеем понимать исторически, как нечто неотъемлемо свойственное тому или иному социальному типу. Но математика мыслится нами как нечто в такой мере абсолютное, что не может подниматься никаких и вопросов о ее типах, о разной ценности этих типов и о социальных корнях каждого такого стиля. Конечно, можно и в математике дойти до таких последних абстракций, которые будут общи всем известным нам типам культуры, и на этом основании рассуждать о вечности ее положений. Но в таком же смысле и в каждом произведении науки, искусства, техники и пр. можно найти такую абстрактнейшую сторону, которая почти не меняется при переходе от одного произведения искусства к другому. Однако ни в коем случае такое знание не будет конкретным. И оно ничего не скажет нам об искусстве, как оно реально есть.
Математика—человечна, создание человеческого искусства. Она социальна, исторична. Она имеет свой стиль, стиль своей эпохи. И если до сих пор из нее старались выкинуть всякое человеческое содержание и превратить ее в максимально абстрактную и формальную науку, то это тоже было результатом определенной эпохи культуры. И эту рассудочную, абстрактную эпоху культуры мы должны уметь точно формулировать, если хотим понять истинную сущность математики. Всякий тип культуры вообще любит ставить себя в центре всей истории и свои принципы толковать как вечные. В этом, к сожалению, мы должны отказать всякому историческому стилю культуры. Общезначимость, непреложность математических положений для нас, к сожалению, уже есть не более как продукт одной весьма специфической культуры. И мы не обязаны остановить историю только на каком–нибудь одном временном ее типе.
Математику до того выпотрошили, до того лишили ее всякого ее жизненного и человеческого содержания, что теперь уже неудивительно встретить фразы вроде того, что математика не знает, что она говорит и о чем она говорит. Действительно, о чем могут говорить арифметические и аналитические операции в математике? Что такое, напр., то же сложение и вычитание, то же логарифмирование или дифференцирование? О чем говорят эти процессы? Ровно ни о чем! Вкладывайте сюда какое угодно содержание. И что именно здесь утверждается? Ровно ничего не утверждается! Это пустые слова о пустоте. Вот до чего дошло современное форм–ализирование и абстрактизация математической науки.
Единственная жизненная сфера математики — это ее техническое применение. Однако для нас это нисколько не утешительно. Если на основании какого–нибудь математического расчета строится то или иное сооружение или машина, то одно из двух. Или это сооружение и машина не есть достояние истории и не сгусток определенных социальных отношений, не есть произведение человеческого труда со всей его исторической обстановкой. Или это сооружение есть момент именно в истории, в социальной жизни есть результат, напр., определенных производственных отношений. В первом случае апелляция к технике не имеет для нас никакого значения, потому что конкретизация и жизненность математики в этом смысле есть конкретизация внутри ее самой; это просто додумывание тех же самых основ чистой математики до ее прикладных выводов, просто новая комбинация все тех же самых чистых и отвлеченных формул. Тут нет ничего принципиально нового. Прикладная математика и чистая математика — это одно и то же, две стороны одного и того же. И совсем другое в том случае, когда построенное на основе математических исчислений сооружение входит в реальную человеческую историю, есть продукт живой социальной мысли, живого человеческого труда, результат определенной исторической обстановки, и теоретико–технической, и практически–производственной, и духовно–творческой. Но тогда мало одной технической конкретизации математики. Тогда надо показать, что же именно в математике обусловило собою возможность такого сооружения или машины, с таким стилем духовной культуры и при таких производственно–технических отношениях. Тогда надо будет поставить вопрос не о техническом только приложении математики, но о ее социально–исторической значимости, о ее человеческом и культурном стиле.
Из прикладной механики мы знаем, что вращающий эффект пароходного руля пропорционален cos х–sin 2х, где χ есть угол с линией киля [220]. Если мы изучим теорию максимумов и минимумов в математическом анализе, то мы легко можем, напр., определить χ в условиях наибольшего эффекта пароходного руля. Что при решении подобной задачи мы как–то конкретизируем отвлеченный математический анализ и как–то приближаем его к жизни, это факт. Но как мы его здесь конкретизируем и к какой жизни приближаем? К какой угодно, но только не к социальной, не к человеческой. Из того, что пароход со своим рулем и килем существует в человеческой обстановке, нисколько не вытекает, что мы его и понимаем обязательно человечески. В человеческой обстановке существует, напр., сам организм человека, с сердцем, легкими, мозгом и пр.; и это совершенно не значит, что мы его понимаем человечески и даже вообще понимаем. До сформирования анатомии как науки люди уже жили тысячелетия и почти ничего не понимали в своем собственном организме. Точно так же и в случае с «техническим» пониманием парохода. Технически понимать что–нибудь совершенно не значит понимать исторически, социально, экономически. Мы можем иметь очень смутное представление о пароходном руле и киле и все–таки решить приведенную выше задачу. Ее можно формулировать примерно следующим образом: при каком χ получается наибольший вращающий эффект чего–нибудь, если этот вращающий эффект пропорционален величине cos х–sin 2χΊ Таким образом, чтобы решить техническую задачу, вовсе не обязательно даже предметно ясное представление тех объектов, к которым эта задача относится. Если же такое представление и налично, то оно, взятое само по себе, ровно ничего исторического в себе не содержит; это просто арена применения чистой математики, от которой много получает сама арена, эти самые сооружения и машины, но ровно ничего не получает математика и, можно сказать, никак не конкретизируется, если под конкретизацией не понимать возникновение тех или иных комбинаций уже имеющихся чисто теоретических построений.