Биосфера и Ноосфера - Вернадский Владимир Иванович (книги онлайн бесплатно без регистрации полностью .TXT) 📗
Для археозоя мы не имеем остатков зеленых организмов. Они непрерывно идут, начиная с палеозоя, и указывают на необычайно резкое развитие вплоть до нашего времени бесчисленного множества их форм, число которых в наше время, по-видимому, не меньше 200 тыс. видов, а количество всех видов, существующих и существовавших на нашей планете,— число не случайное — не может быть сейчас учтено, так как относительно небольшое число ископаемых их видов (несколько тысяч) выражает только неполноту наших знаний. Оно быстро увеличивается с каждым десятилетием, даже с каждым годом.
§ 96. Гораздо меньшие количества живого вещества собраны в форме автотрофных бактерий. В то время как существование зеленых автотрофных организмов стало ясным в конце XVIII — начале XIX в. и в 1840-х гг. благодаря работам Ж. Буссенго, Ж. Дюма и Ю. Либиха вошло в научное сознание, существование автотрофных, не связанных с солнечным лучом, лишенных хлорофиллла бактерий было открыто в конце XIX столетия С. Н. Виноградским и не оказало пока того влияния на научную мысль, какое можно было ожидать. Организмы эти играют огромную роль в геохимической истории серы, железа, азота, углерода, но они не очень разнообразны; известно едва ли больше ста видов, и по своей массе да и по своему значению они не сравнимы с зелеными растениями.
Правда, они рассеяны всюду; мы их находим в почвах, в иле водных бассейнов, в морской воде; но нигде нет тех их количеств, которые были бы сравнимы с количеством автотрофной зелени суши, не говоря уже о зеленом планктоне мирового океана. А между тем геохимическая энергия бактерий гораздо выше той же энергии зеленых растений, превышает ее в несколько раз, иногда в десятки и сотни раз, является максимальной для живых веществ. Правда, кинетическая геохимическая энергия, вычисленная на гектар, будет, в конце концов, одинакова для одноклеточных зеленых водорослей и для бактерий, но, в то время как водоросли могут достигнуть наибольшего стационарного состояния в десятки дней, бактерии в благоприятных условиях достигают их в десятки раз быстрее — в 36—48 часов.
§ 97. Наблюдений над размножением автотрофных бактерий у нас очень мало. По-видимому (Ж. Рейнке), они размножаются медленнее других бактерий; наблюдения над железными бактериями (Н. Г. Холодный) не противоречат этому утверждению. Так, эти бактерии делятся 1—2 раза в сутки, тогда как такое деление для обычных бактерий может наблюдаться только при неблагоприятных условиях их жизни. Так, например, Bacillus ramosus, живущая в реках и дающая при благоприятных условиях не менее 48 поколений в сутки, дает при низких температурах всего четыре поколения (М. Уорд, 1925).
Если даже такое понижение быстроты размножения автотрофных бактерий по сравнению с другими бактериями окажется общим явлением для них всех, все же быстрота их размножения будет отвечать наибольшей, но не средней скорости передачи жизни зеленых одноклеточных растений. Надо было бы ждать поэтому, что их количества будут гораздо больше масс зеленых организмов и что то явление, какое мы наблюдаем в море для одноклеточных водорослей (§51), — их преобладание над зелеными метафитами — будет существовать для бактерий по сравнению с зелеными протистами.
§98. В действительности этого нет. Причина малого скопления живой материи в этой форме жизни очень аналогична причине, обусловливающей преобладание зеленых метафитов над зелеными протистами на суше (§ 49).
Их чрезвычайная всюдность, проникновение ими, например, всех толщ океана — далеко за пределы тех слоев, куда проникает солнечный луч, заставляет думать, что причина относительно малых их количеств в биосфере, выявляющаяся для всех столь различных их разностей, как бактерии азотные, серные или железные, должна быть причиной не частного, а общего характера.
Такую причину можно видеть в совершенно особых условиях их питания, т. е. в условиях возможности их существования.
Все они получают нужную им для жизни энергию, окисляя не вполне окисленные или неокисленные соединения азота, серы, железа, марганца, углерода в их высшие степени окисления. Но нужные исходные, бедные кислородом тела — вадозные минералы этих элементов — никогда не могут быть в биосфере собраны в достаточных количествах. Ибо область биосферы в общем есть химическая область окисления, так как она переполнена свободным кислородом — созданием зеленых организмов. В этой богатой кислородом среде устойчивыми формами, даже помимо влияния жизни, являются наиболее окисленные, богатые кислородом соединения.
В связи с этим автотрофные организмы должны выискивать среду своего бытия. И с этим обстоятельством связаны приспособления их организации.
Они могут — а некоторые, как азотные бактерии, повидимому, так действуют всегда— окислять кислородные соединения, добывать нужную для жизни энергию, окисляя низшие степени окисления в высшие, но количество химических элементов, допускающих этого рода реакции, ограничено; к тому же в избытке свободного кислорода те же богатые кислородом тела получаются помимо бактерий, так как в этой именно среде они являются устойчивой формой молекулярных структур.
§ 99. Автотрофные бактерии находятся в состоянии непрерывного недостатка пищи, в состоянии недоедания. С этим связаны многочисленные приспособления их жизни. Так, всюду — в грязях, источниках, в морской воде, сырых почвах — мы видим своеобразные вторичные равновесия между бактериями, восстанавливающими сульфаты, и автотрофными организмами, их окисляющими.
Повторение в бесчисленных случаях, на каждом шагу, таких вторичных равновесий указывает на закономерность явления. Живое вещество выработало эти структуры благодаря огромному давлению жизни автотрофных бактерий (§ 27), не находящих для своей жизни в биосфере достаточного числа готовых, бедных кислородом соединений. Живое вещество создает их в этих случаях само в косной среде.
В океанах такие же равновесия наблюдаются между автотрофными бактериями, окисляющими азот, и раскисляющими нитраты гетеротрофными организмами. Это одно из грандиозных равновесий химии гидросферы.
Всюдность нахождения этих организмов служит проявлением их огромной геохимической энергии, быстроты передачи их жизни: отсутствие их больших скоплений где бы то ни было связано с недостатком бедных кислородом соединений в биосфере, в среде, где все время выделяется избыток свободного кислорода зелеными растениями.
Они не захватывают значительных масс живого вещества только вследствие физической невозможности это сделать благодаря отсутствию в биосфере нужных для их жизни соединений.
Между количеством вещества, захваченного автотрофными зелеными организмами и автотрофными бактериями, должны существовать определенные соотношения, обусловленные большим значением геохимической энергии преобладающих по массе организмов, создающих свободный кислород.
§ 100. Не раз высказывались мнения, что в этих своеобразных, очень специальных организмах мы имеем представителей наиболее древних организмов, появившихся раньше зеленых растений. Еще недавно эти идеи высказывал один из крупных натуралистов-мыслителей нашего времени — американец Г. Ф. Осборн (1918).
Наблюдение их роли в биосфере этому противоречит.
Тесная связь существования этих организмов с присутствием свободного кислорода указывает на их зависимость от зеленых организмов — от солнечной лучистой энергии — в не меньшей степени, чем зависят от нее животные и бесхлорофилльные растения, питающиеся веществами, приготовленными зелеными растениями. Ибо в природе — в биосфере — весь свободный кислород, пища этих тел, есть продукт зеленых растений.
На то же — вторичное — значение этих организмов по сравнению с зелеными растениями указывает и характер их функций в обшей экономии живой природы.
Значение их огромно в биогеохимической истории и серы, и азота — двух элементов, столь необходимых для построения главного вешества протоплазмы — белковых молекул. Однако, если бы деятельность этих автотрофных организмов прекратилась, жизнь, может быть, уменьшилась бы количественно, но осталась бы мощным механизмом биосферы. так как те же вадозные соединения — нитраты, сульфаты и газообразные формы переноса в биосфере азота и серы, аммиак и сероводород — постоянно создаются в ней в значительных количествах помимо жизни.