Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф (читать книги онлайн TXT) 📗
Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем мнимыми числами.
Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей «Алгебре» словами хотя и менее поэтичными, но все же содержащими отголосок Чуда:
Следовательно, все такие выражения, как , и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30.
В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = = i, то все мнимые числа можно расположить на мнимой оси как кратные »'.
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — i) и т. п. Такие комбинации получили название комплексных чисел; они представлены точками на плоскости, которая называется комплексной плоскостью и образована действительной и мнимой осями. В общем случае любое комплексное число можно записать в виде
где х — действительная часть, а у — мнимая часть.
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость
Причина, по которой мы затеяли этот экскурс в историю комплексных чисел, заключается в том, что многие фрактальные формы могут быть воспроизведены математически, с помощью итеративных процедур на комплексной плоскости. В конце 70-х годов, опубликовав свою новаторскую книгу, Мандельбро обратил внимание на особый класс математических фракталов, известных как множества Жулиа32. Эти множества были открыты французским математиком Гастоном Жулиа в начале XX столетия, но скоро канули в безвестность. Интересно отметить, что Мандельбро впервые наткнулся на работы Жулиа еще студентом, посмотрел на его примитивные рисунки (выполненные в те времена без помощи компьютера) и потерял к ним интерес. Спустя полвека, однако, Мандельбро понял, что рисунки Жулиа представляют собой грубые наброски сложных фрактальных форм; и он принялся подробно воспроизводить их с помощью самых мощных компьютеров, какие только сумел найти. Результаты оказались поразительными.
В основу множества Жулиа положено простое отображение
Где z — комплексная переменная, а с — комплексная постоянная. Итеративная процедура состоит в выборе любого числа z на комплексной плоскости, возведении его в квадрат, добавлении константы с, возведении результата в квадрат, добавлении к нему константы с и т. п. Когда это вычисление выполняется с различными начальными значениями z, некоторые из них будут увеличиваться до бесконечности в ходе процесса итерации, в то время как другие остаются конечными33. Множество Жулиа — это набор всех тех значений z, или точек на комплексной плоскости, которые при итерации ограничены некоторым пределом, т. е. конечны.
Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время.
Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34.
Рис. 6-18. Разнообразие множеств Жулиа. Из Peitigen and Richter (1986)
Богатство и разнообразие форм, многие из которых напоминают живые создания, просто поражает. Однако настоящие чудеса начинаются, когда мы увеличиваем очертания любой части множества Жулиа. Как и в случае с облаком или береговой линией, такое же богатство отображается на всех уровнях диапазона исследования. С увеличением степени разрешения (т. е. когда все больше и больше знаков после точки учитывается при вычислении числа z) появляется все больше и больше деталей контура фрактала и обнаруживается фантастическая последовательность паттернов внутри паттернов — похожих, но никогда не идентичных друг другу.
Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется множеством Мандельбро (рис. 6-19). Это просто совокупность на комплексной плоскости всех точек с константой с, для которых соответствующие множества Жулиа представляют единые связные области. Чтобы построить множество Мандельбро, таким образом, следует построить отдельное множество Жулиа для каждой точки с на комплексной плоскости и определить, является ли это конкретное множество связным или разделенным. Например, среди множеств Жулиа, изображенных на рис. 6-18, три набора в верхнем ряду и один в центре нижнего ряда — связны (т. е. каждое из них представляет собой единую фигуру), в то время как крайние наборы в нижнем ряду разделены (т. е. состоят из нескольких отдельных областей).