История греческой философии в её связи с наукой - Гайденко Пиама Павловна (читать книги бесплатно полностью .txt) 📗
Таким образом, именно теория пропорций была в центре математических исследований, проводившихся в Академии, и не случайно такие математики, как Теэтет и Евдокс Книдский, если доверять античным источникам, уделяли большое внимание этой теме. Так, О. Беккер полагает, что V и VI книги "Начал" Евклида, содержащие теорию пропорций, принадлежат Евдоксу, с чем согласен также и ¤.?. ван дер Варден.
Последовательный ряд наук - арифметика, геометрия и стереометрия продолжается еще одной наукой - астрономией. Астрономия - четвертая в ряду математических наук, но в то же время она как бы возвращает нас и к началу ряда, поскольку, как мы помним, по Платону, арифметика обязана своим возникновением созерцанию Неба и происходящих в нем перемен. Вот что пишет Платон о месте астрономии среди других наук и о ее предмете: " "Завершением их (наук. - П.Г.). должно служить рассмотрение божественного происхождения и прекраснейшей и божественной природы зримых вещей. Бог дал созерцать ее людям, но без только что разобранных наук никто этого не может, хотя бы кто и похвалялся тем, что он легко все схватывает... Нам надо познать точность времени, а именно, с какой точностью совершаются все небесные кругообращения... Всякая геометрическая фигура, любое сочетание чисел или гармоническое единство имеют сходство с кругообращением звезд; следовательно, единичное для того, кто надлежащим образом это усвоил, разъясняет и все остальные".
Отсюда можно видеть, что астрономия имеет своим предметом закономерность небесных движений, выраженную в точных числовых соотношениях. В этом смысле астрономия - тоже наука математическая, предполагающая знание арифметики и геометрии. Более того, как утверждает Платон, в движениях небесных тел находят свое как бы телесное воплощение математические отношения, изучаемые тремя первыми математическими науками. А потому изучение одной из этих наук, в сущности, уже есть и изучение остальных, ибо их предмет в конце концов один, только берется в разных аспектах. Видимо, так можно истолковать последнее предложение приведенного отрывка. Это опять-таки близко к пифагорейской традиции, согласно которой определенное сочетание чисел соответствует правильному движению небесных сфер и гармоническому сочетанию звуков. Гармония чисел, движений и тонов - одна и та же гармония, и ее чистое выражение - математическая пропорция.
Астрономия у Платона непосредственно следует за стереометрией: стереометрию он определяет в "Государстве" как "науку об измерении глубины", а астрономию - как науку о вращении тел, имеющих глубину. В отношении астрономии Платон рассуждает так же, как и в отношении геометрии, различая два возможных к ней подхода: практический и чисто философский. С практической точки зрения астрономия очень важна, ибо "внимательные наблюдения за сменой времен года, месяцев и лет пригодны не только для земледелия и мореплавания, но не меньше и для руководства военными действиями". Однако практическая польза от астрономии - это отнюдь не самое главное, ради чего необходимо ею заниматься. Как и другие науки арифметика, геометрия, стереометрия, - астрономия, согласно Платону, подготовляет наш ум к постижению высшей истины, ценной не ради ее приложений, но сама по себе, и в этом главное ее назначение: "...в науках очищается и вновь оживает некое орудие души каждого человека, которое другие занятия губят и делают слепым, а между тем сохранить его в целости более ценно, чем иметь тысячу глаз, ведь только при его помощи можно увидеть истину". Платон, как видим, подчеркивает, что астрономия, как и математика в целом, служит средством перехода от предметов, данных непосредственному ощущению, к предметам, которые можно постигнуть лишь в мышлении, т.е. к "вещам невидимым". И в этом он усматривает главное назначение астрономии. Понятая таким образом астрономия, как и другие рассмотренные выше науки, является преддверием философии.
Напротив, в том случае если ее рассматривают не как путь к высшему роду знания, которое Платон называет диалектикой, а как высшее из возможных познаний само по себе, то впадают в грубое заблуждение. При этом, как характерно выражается Платон, "возводят астрономию до степени философии", т.е. превращают ее из средства в самоцель. "Если заниматься астрономией таким образом, как те, кто возводит ее до степени философии, - говорит Платон, - то она даже слишком обращает наши взоры вниз".
Каким образом изучение одного и того же предмета - законов движения небесных тел - может иметь столь различные, даже противоположные результаты? В чем здесь дело и против чего тут выступает Платон? "Пожалуй, ты еще скажешь, - обращается Сократ к своему собеседнику Главкону, - будто если кто-нибудь, запрокинув голову, разглядывает узоры на потолке и при этом кое-что распознает, то он видит это при помощи мышления, а не глазами... Глядит ли кто, разинув рот, вверх или же, прищурившись, вниз, когда пытается с помощью ощущений что-либо распознать, все равно, утверждаю я, он никогда этого не постигнет, потому что для подобного рода вещей не существует познания и человек при этом смотрит не вверх, а вниз, хотя бы он и лежал ничком на земле или умел плавать на спине в море".
Вполне понятно, что Платон считает невозможным познание с помощью ощущений, "глазами", ибо в действительности научное познание осуществляется с помощью мышления. Поэтому эмпирические явления не могут быть, согласно Платону, предметом научного исследования - таковыми являются только предметы идеальные или "промежуточные", а именно числа, фигуры и их соотношения. Постигаются же последние "разумом и рассудком, но не зрением". Что же касается эмпирически данных объектов астрономии, то ими, так же как и чертежами в геометрии, можно пользоваться только как подсобным материалом, ибо они никогда не тождественны тем идеализациям, которые составляют подлинный предмет изучения в математике: "...небесным узором надо пользоваться как пособием для изучения подлинного бытия, подобно тому как если бы нам подвернулись чертежи Дедала или какого-нибудь иного мастера либо художника, отлично и старательно вычерченные. Кто сведущ в геометрии, тот, взглянув на них, нашел бы прекрасным их выполнение, но было бы смешно их всерьез рассматривать как источник истинного познания равенства, удвоения или каких-либо иных отношений".
Итак, небесные тела и их видимое движение уподоблены Платоном чертежам в геометрии, а потому астроном должен видеть в них только вспомогательное средство для своей науки - не больше того. Отсюда парадоксальный вывод Платона, который привел в дальнейшем к жесткому разделению эмпирического и философско-теоретического познания, особенно в средневековой науке: "Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне, раз мы хотим действительно освоить астрономию и использовать еще неиспользованное, разумное по своей природе начало нашей души" (курсив мой. - П.Г.).
Это заявление Платона, в сущности, шло вразрез с практикой астрономической науки его времени, которая, естественно, не могла оставлять в стороне "то, что на небе"; но такой крайний антиэмпиризм не был простой случайностью: он логически вытекал из платоновского убеждения в том, что точная наука должна иметь дело с идеализациями, а не с теми эмпирическими предметами, которые даны нам в чувственном восприятии. Платон поэтому не только не допускал возможности точного научного знания применительно к земным явлениям, что впоследствии пересмотрел Аристотель, но, как видим, даже изучение небесных светил он считал всего лишь подсобным средством для истинной астрономии.
Перечислив математические науки - арифметику, геометрию, стереометрию, астрономию, Платон завершает этот ряд наук музыкой, которая тоже принадлежит к математическим наукам. "...Как глаза наши устремлены к астрономии, - пишет Платон, - так уши - к движению стройных созвучий: эти две науки - словно родные сестры; по крайней мере так утверждают пифагорейцы, и мы с тобой, Главкон, согласимся с ними". И математика, и астрономия изучают математические соотношения: астрономия - в движении небесных светил, а музыка - в гармонических созвучиях. Пифагорейцы, подчеркивает Платон, положили начало музыке как науке: "Ведь они поступают совершенно так же, как астрономы; они ищут числа в воспринимаемых на слух созвучиях, но не подымаются до общих вопросов и не выясняют, какие числа созвучны, а какие - нет и почему".