Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Философия » Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗

Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗

Тут можно читать бесплатно Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Полагаю, что в строгом смысле это действительно может быть несколько несправедливо; и читатель может при желании перефразировать вывод  Gследующим образом:

G* Для установления математической истины ни один отдельно взятый математик не применяет только те алгоритмы, какие он (или она) полагает обоснованными.

Представленные мною доводы по-прежнему остаются в силе, однако, мне кажется, некоторые из более поздних утратят значительную часть своей силы, если представить ситуацию в таком виде. Более того, в случае формулировки G* все доказательство уходит в направлении, на мой взгляд, бесперспективном, сосредоточенном, в большей степени, на конкретных механизмах, управляющих действиями конкретных индивидуумов, нежели на принципах, лежащих в основе действий любого из нас. Меня же на данном этапе интересует не столько различия подходов отдельных математиков к той или иной математической проблеме, сколько то общее, что есть между нашим пониманием и нашим математическим восприятием.

Попытаемся разобраться, действительноли мы вынуждены принять формулировку G*. В самом ли деле суждения математиков настолько субъективны, что они могут принципиальнорасходиться при установлении истинности какого-то конкретного Π 1-высказывания? (Разумеется, доказательство, устанавливающее истинность Π 1-высказывания, может быть просто-напросто быть слишком громоздким или слишком сложным, чтобы его мог воспроизвести тот или иной математик (см. ниже по тексту возражение Q12), т.е. на практикематематики вполне могут разойтись во мнениях. Однако в данном случае нас интересует вовсе не это. Мы занимаемся исключительно  принципиальнымивопросами.) Вообще говоря, математическое доказательство есть вещь не настолько субъективная, как может показаться на основании вышесказанного. Математики могут придерживаться самых разных — и, на их взгляд, неопровержимо истинных — точек зрения по тем или иным фундаментальным вопросам и во всеуслышание объявлять об этом, однако едва дело доходит до доказательств или опровержений каких-либо вполне определенных конкретных Π 1-высказываний, все разногласия тут же куда-то исчезают. Никто не воспримет всерьез доказательство Π 1-высказывания, утверждающего, по сути своей, непротиворечивость некоторой формальной системы F, если математик будет основывать его только лишь на существовании некоего спорного бесконечного множества S. То, что при этом в действительности доказывается, можно сформулировать следующим, куда более приемлемым, образом: «Если множество S существует, то формальная система Fявляется непротиворечивой, и в этом случае данное Π 1-высказывание истинно».

Тем не менее, могут быть и исключения: например, один математик полагает, что некоторое неконструктивно-бесконечное множество S«с очевидностью» существует — или, по крайней мере, что допущение о его существовании никоим образом не приводит к противоречию, — другой же математик никакой очевидности здесь не усматривает. Дискуссии математиков по таким фундаментальнымвопросам могут порой принимать поистине неразрешимый характер. При этом обе стороны могут оказаться, в принципе, неспособны сколько-нибудь убедительно изложить свои доказательства, даже в отношении Π 1-высказываний. Возможно, каждому математику и в самом деле присуще некое особое внутреннее восприятие истинности утверждений, связанных с неконструктивно-бесконечными множествами. Конечно же, математики нередко заявляюто том, что их восприятие таких вещей в корне отличается от восприятия коллег. Однако я полагаю, что такие различия, по сути своей, подобны различиям в ожиданиях, которые различные математики могут иметь и в отношении истинности обычных математических высказываний. Эти ожидания суть всего лишь предварительные предположения. До тех пор, пока не представлено убедительного доказательства или опровержения, математики могут спорить друг с другом об ожидаемой или предполагаемойистинности того или иного положения, однако представление такого доказательства одним из математиков убеждает (в принципе) всех. Что до фундаментальных вопросов, то там этих доказательств как раз нет. Возможно, и не будет. Быть может, их нельзя отыскать по той причине, что их просто-напросто нет, а фундаментальные вопросы допускают существование различных, но равно справедливыхточек зрения.

Здесь, однако, следует подчеркнуть еще один связанный с Π 1-высказываниями момент. Возможность наличия у математика ошибочнойточки зрения — т.е. такой точки зрения, которая вынуждает его делать неверные выводы в отношении истинности тех или иных Π 1-высказываний, — нас в данный момент не интересует. Нет ничего невероятного в том, что математики порой опираются на неверное в фактическом отношении «понимание» — а то и на необоснованные алгоритмы, — только к настоящему обсуждению это никакого отношения не имеет, поскольку согласуетсяс выводом G. Впрочем, эту ситуацию мы подробно рассмотрим ниже, в §3.4. Следовательно, дело в данном случае заключается не в том, могут ли разные математики придерживаться противоречащиходна другой точек зрения, а скорее в том, может ли одна точка зрения оказаться, в принципе, мощнеедругой. Каждая такая точка зрения будет совершенно справедлива в том, что касается установления истинности Π 1-высказываний, однако какая-то из них сможет, в принципе, дать своим последователям возможность установить, что те или иные вычисления не завершаются, тогда как другие, более слабые, точки зрения на это неспособны; то есть одни математики будут обладать существенно большей способностью к пониманию, нежели другие.

Не думаю, что такая возможность представляет собой сколько-нибудь серьезную угрозу для моей первоначальной формулировки G. Хотя в отношении бесконечных множеств математики и вправе придерживаться различных точек зрения, этих самых точек зрения вовсе не такмного: по всей видимости, не более пяти. Существенные в этом смысле расхождения могут быть обусловлены лишь утверждениями, подобными аксиоме выбора (о ней говорилось в комментарии к возражению Q10), которую одни полагают «очевидной», другие же напрочь отвергают связанную с ней неконструктивность. Любопытно, что эти различные точки зрения на собственно аксиому выбора неприводят непосредственно к тому Π 1-высказыванию, относительно справедливости которого возникают разногласия. Ибо, независимо от своей предполагаемой «истинности» или «ложности», аксиома выбора, как показывает теорема Гёделя—Коэна(см. комментарий к Q10), не вступает в противоречие со стандартными аксиомами системы ZF. Могут, однако, существовать и другиеспорные аксиомы, соответствующей теоремы для которых нет. Впрочем, обыкновенно, когда речь заходит о принятии или опровержении той или иной теоретико-множественной аксиомы — назовем ее аксиомой Q, — утверждения математиков принимают следующий вид: «Из допущения справедливости аксиомы Qследует, что…». Такое утверждение при всем желании не сможет стать предметом спора между математиками. Аксиома выбора, похоже, является исключением в том смысле, что ее справедливость часто подразумевается без приведения упомянутой оговорки, однако это обстоятельство, по-видимому, никак не противоречит моей общей объективной формулировке вывода  G— при условии, что мы ограничимся только Π 1-высказываниями:

G** Для установления истинности Π 1-высказываний математики-люди не применяют заведомо обоснованные алгоритмы,

а этого нам в любом случае вполне достаточно.

Есть ли другие спорные аксиомы, которые одни математики считают «очевидными», а другие ставят под сомнение? Думаю, будет огромным преувеличением сказать, что имеется хотя бы десять существенно различных точек зрения на теоретико-множественные допущения, которые в явном виде как допущения не формулируются. Положим, что их не более десяти, и рассмотрим следствия из этого допущения. Это означает, что существует порядка десяти, по сути, различных классов математиков, различаемых по типу рассуждения в отношении бесконечных множеств, который они полагают «очевидно» истинным. Каждого такого математика можно назвать математиком n-го класса, где  nизменяется в весьма узком диапазоне — не более десяти значений. (Чем больше номер класса, тем мощнее будет точка зрения принадлежащих к нему математиков.) Вывод G** принимает в этом случае следующий вид:

Перейти на страницу:

Пенроуз Роджер читать все книги автора по порядку

Пенроуз Роджер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Тени разума. В поисках науки о сознании отзывы

Отзывы читателей о книге Тени разума. В поисках науки о сознании, автор: Пенроуз Роджер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*