Скрытые связи - Капра Фритьоф (книги полностью .TXT) 📗
В своем широком обзоре современного состояния генетики к схожим выводам приходит и Эвелин Фокс Келлер:
До широких масс этой идее еще предстоит дойти, но все большее число тех, кто работает на переднем крае науки, явственно убеждаются, что примат гена как ключевой концепции объяснения биологической структуры и функции характерен в гораздо большей степени для XX, чем для XXI века [54].
То обстоятельство, что многие ведущие исследователи в области молекулярной генетики осознают теперь необходимость выхода за рамки концепции генов ради более широкого эпигенетического взгляда, весьма важно для наших попыток оценить нынешнее состояние биотехнологии. Мы увидим, что все те проблемы, которые влекут за собой попытки выяснить связь между генами и болезнями, использовать клонирование в медицинских исследованиях и применять биотехнологии в сельском хозяйстве, обусловлены узостью концептуальной основы генетического детерминизма и скорее всего не исчезнут, пока главные поборники биотехнологий не утвердятся в более широких системных представлениях.
С возникновением в 70-х годах методик ДНК-секвенирования и генного сплайсинга новообразованные биотехнологические компании, прежде всего, обратились к медицинским приложениям генной инженерии. Основываясь на предположении, что гены определяют биологическую функцию, было естественно заключить, что первоначальные причины биологических расстройств следует искать в генетических мутациях. Соответственно, генетики поставили перед собой задачу точно определить гены, ответственные за конкретные заболевания. В случае удачи, думали они, мы научимся предотвращать и лечить «генетические» болезни, исправляя или заменяя дефектные гены.
Несмотря на то, что реальных терапевтических успехов подобных методик можно было ожидать лишь в отдаленном будущем, биотехнологические компании увидели в развитии генной терапии небывалые возможности для бизнеса и стали настойчиво пропагандировать свои генетические исследования в прессе. Год за годом броские заголовки газет и передовицы журналов бодро рапортовали об обнаружении новых «болезнетворных» генов и соответственно открывающихся терапевтических возможностях. Несколько недель спустя за ними, как правило, следовали опасения серьезных ученых, публиковавшиеся, однако, в виде небольших заметок в общей массе новостей.
Генетики вскоре обнаружили огромную дистанцию между умением идентифицировать гены, участвующие в развитии болезни, и возможностью определить их точную функцию, не говоря уже о перспективах манипулирования ими для получения желаемого результата. Как мы теперь знаем, дистанция эта — прямое следствие несоответствия линейных причинно-следственных цепочек, выстраиваемых генетическим детерминизмом, характеру нелинейных эпигенетических сетей биологической реальности.
Сам пресловутый термин «генная инженерия» подразумевает, что манипулирование генами — это конкретная и полностью понятная механическая процедура. В самом деле, именно так ее обычно и преподносит популярная пресса. Как пишет биолог Крейг Холдридж:
Мы слышим о том, как гены вырезают и сшивают при помощи ферментов, об изготовлении новых конструкций ДНК и введении их в клетку. Клетка встраивает ДНК в свой механизм, который начинает считывать информацию, закодированную в новой ДНК. Эта информация затем проявляется в построении соответствующих белков, выполняющих в организме те или иные функции. В конце концов в результате этих, якобы точно выверенных, процедур трансгенный организм приобретает новые качества [55].
Действительное же положение вещей в генной инженерии, увы, куда менее радужно. На нынешнем этапе ее развития ученые еще не умеют контролировать происходящее в организме. Они могут внедрить ген в клеточное ядро при помощи соответствующего вектора, но они никогда не знают ни того, встроит ли клетка его в свою ДНК, ни того, где он будет локализован, ни того, к каким изменениям это приведет в организме. В результате генная инженерия продвигается вперед методом проб и ошибок чрезвычайно расточительным образом. Доля успеха в генетических экспериментах составляет всего лишь около одного процента, поскольку тот живой контекст организма-хозяина, который этот успех определяет, оказывается, по большей части, недоступен инженерному мышлению, составляющему основу нынешних биотехнологий [56].
«Генная инженерия, — пишет биолог Дэвид Эренфельд, — основывается на предположении, что мы можем взять ген у вида А, где он делает что-то полезное, и передать его виду Б, где он станет делать то же самое. Большинство генных инженеров знают, что это не всегда верно, но биотехнологическая индустрия в целом действует так, будто это бесспорно» [57]. Эренфельд отмечает, что указанная предпосылка сталкивается с тремя основными трудностями.
Во-первых, экспрессия гена зависит от генетического и клеточного окружения (т. е. всей эпигенетической сети) и может изменяться, когда он оказывается в иной среде. «Раз за разом, — пишет биолог Ричард Штроман, — мы наблюдаем, что гены, связанные с заболеванием у мыши, не обнаруживают такой связи в организме человека... Таким образом, оказывается, что мутации даже ключевых генов оказывают либо не оказывают влияние на болезнь в зависимости от генетического окружения, в котором они имеют место» [58].
Во-вторых, роль генов как правило многогранна, и нежелательные эффекты, подавляемые в организмах одного вида, могут проявиться при передаче гена другому виду. И в-третьих, очень часто те или иные качества обусловлены множеством генов, порой даже расположенных в различных хромосомах, и манипулировать ими крайне сложно. Совокупность этих трех проблем и является причиной того, что применение генной инженерии в медицинских целях до сих пор не принесло желаемых результатов. «Перенести гены в новую среду и заставить их... работать как раньше, — подытоживает Дэвид Уэзеролл, директор Института молекулярной медицины при Оксфордском университете, — с учетом всех вовлеченных в процесс регуляторных механизмов оказывается пока что слишком сложной задачей для молекулярных генетиков» [59].
Поначалу генетики надеялись, что удастся связать каждое конкретное заболевание с конкретным геном, однако выяснилось, что «одно-генные» расстройства крайне малочисленны и ответственны не более чем за 2 % человеческих заболеваний. Но даже и в таких, не допускающих разночтений случаях — скажем, при серповидноклеточной анемии, атрофии мышц или кистозном фиброзе, — когда в результате мутации нарушается функция одного ключевого белка, связь между дефектным геном и течением болезни все еще плохо изучена. Так, серповидноклеточная анемия, распространенная у представителей негроидной расы, при одном и том же дефектном гене может протекать совершенно по-разному, у одних вызывая смерть в раннем детстве, а у других оставаясь практически недиагностируемой в среднем возрасте [60].
Другая проблема состоит в том, что дефектные гены при таких одногенных заболеваниях часто очень и очень велики. Ген, ответственный за кистозный фиброз — болезнь, распространенную у жителей Скандинавии, — состоит примерно из 230 000 пар нуклеотидов и кодирует синтез белка, состоящего из почти полутора тысяч аминокислот. В этом гене наблюдались более 400 различных мутаций. Из них к заболеванию приводит только одна, к тому же у разных людей одни и те же мутации могут вызывать различные симптомы. Все это делает поиск «кистознофиброзного дефекта» крайне проблематичным [61].
Проблемы, связанные с изучением немногочисленных одногенных расстройств, еще более усугубляются в случае столь обычных болезней, как рак или сердечно-сосудистые заболевания, где в игре участвует сеть множества генов. Здесь, как отмечает Эвелин Фокс Келлер, пределы наших нынешних знаний видны куда более отчетливо. Сетевой эффект приводит к тому, что, хотя мы достигли огромных успехов в распознании генетического риска, перспективы существенных терапевтических подвижек — которые, как думалось всего десять лет назад, тут же последуют за разработкой новых диагностических методик — отодвигаются в еще более отдаленное будущее [62].