Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги без регистрации полные версии txt) 📗
Ошибки несколько иного рода возникают при неверной формулировке математического утверждения; в этом случае выдвигающий утверждение математик, возможно, имеет в видунечто совсем отличное от того, что он буквально утверждает. Впрочем, такие ошибки также исправимы и не имеют ничего общего с теми внутреннимиошибками, причиной которых является понимание, опирающееся на необоснованную систему F(здесь уместно вспомнить фразу Фейнмана, которую мы цитировали в связи с возражением Q13: «Не слушайте, что я говорю; слушайте, что я имею в виду!»). Мы с вами здесь для того, чтобы выяснить, что в принципеможет (либо не может) быть установлено каким угодно математиком (человеком); ошибки же, подобные только что рассмотренным, — т.е. исправимые ошибки — никакого отношения к этой проблеме не имеют. Важнейший, пожалуй, для всего нашего исследования момент: круг идей и понятий, доступных математическому пониманию, непременно должен включать в себя центральную идею доказательства Гёделя—Тьюринга; на этом, собственно, основании мы и не рассматриваем всерьез возможность I, а возможность IIполагаем крайне невероятной. Как уже отмечалось выше (в комментарии к возражению Q13), идеядоказательства Гёделя—Тьюринга, безусловно, должна являться частью того, что в принципев состоянии понять математик, даже если какое-то конкретное утверждение « G( F)», на котором этот математик, возможно, основывается, ошибочно — лишь бы ошибка была исправимой.
С возможной «необоснованностью» предполагаемого алгоритма математического понимания связаны и другие вопросы, о которых не следует забывать. Эти вопросы касаются процедур «восходящего» типа — таких, к примеру, как самоусовершенствующиеся алгоритмы, алгоритмы обучения (в том числе и искусственные нейронные сети), алгоритмы с дополнительными случайными компонентами, а также алгоритмы, операции которых обусловлены внешним окружением, в котором функционируют соответствующие алгоритмические устройства. Некоторые из упомянутых вопросов были затронуты ранее (см. комментарий к возражению Q2), подробнее же мы рассмотрим их при обсуждении случая III, к каковому обсуждению мы как раз и приступаем.
3.5. Может ли алгоритм быть непознаваемым?
В соответствии с вариантом III, математическое понимание представляет собой результат выполнения некоего непознаваемого алгоритма. Что же конкретно означает определение «непознаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципиальными. Так, утверждая, что неопровержимая истинность некоторого Π 1-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное Π 1-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый математик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам потребуется несколько иная интерпретация термина «непознаваемый». Я буду понимать его так: рассматриваемый алгоритм является настолько сложным, что даже описание его практическинеосуществимо.
Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного известного алгоритма, рассуждения в терминах принципиально возможного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вывода того или иного конкретного предположения из такой формальной системы или алгоритма рассматривались в «принципиальном» контексте в силу элементарной необходимости. Похожим образом обстоит дело с установлением истинности Π 1-высказываний. Π 1-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тьюринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредственных вычислений. (Об этом мы говорили в комментарии к возражению Q8.) Аналогично, утверждение, что какое-то конкретное предположение выводимо (либо невыводимо) в рамках некоей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представляет собой вид утверждения об истинном (или, соответственно, ложном)характере какого-то конкретного Π 1-высказывания (см. окончание обсуждения возражения Q10). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пониматься именно в таком «принципиальном» смысле.
Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическому» подходу. Принципиальновозможно описать любую формальную систему, машину Тьюринга, либо Π 1-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознаваемости» имел хоть какой-нибудь смысл, нам следует рассматривать его именно в плоскости возможности их практической реализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществляющая этот алгоритм операция машины Тьюринга становится «известной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и алгоритмические операции) можно представить в виде последовательности 0, 1, 2, 3, 4, 5, 6, …, двигаясь вдоль которой, мы — в принципе— можем со временем достичь любого натурального числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляется возможным. Например, номер машины Тьюринга, описанной в НРК (на с. 56), явно слишком велик, чтобы его можно было получить на практике посредством подобного перечисления. Даже если мы были бы способны выдавать каждую последующую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизительно 0,5 × 10 -43с, см. §6.11), то и в этом случае за все время существования Вселенной, начиная от Большого Взрыва и до настоящего момента, нам не удалось бы добраться до числа, двоичное представление которого содержит более 203 знаков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК, это число определено в явном виде.
Практически «непознаваемым» следует считать такое натуральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной человеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-топредел так или иначе существовать должен, а следовательно, должны существовать и числа, находящиеся за этим пределом, описать которые человек не в состоянии. (См. также комментарий к возражению Q8.) В соответствии с возможностью III, нам следует полагать, что за пределами познаваемости алгоритм F(предположительно лежащий в основе математического понимания) оказывается именно вследствие неимоверной сложности и чрезвычайной детализированности своего описания — причем речь идет исключительно об « описуемости» алгоритма, а не о познаваемости его как алгоритма, которым, предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуемости», собственно, и отделяет случай IIIот случая II. Иными словами, рассматривая случай III, мы должны учитывать возможность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алгоритмическую операцию, в соответствии с которой работает наше же математическое понимание.