Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер (читать книги онлайн полные версии TXT) 📗
Пеано, по некоторым непостижимым, но, возможно, обаятельно романтическим причинам, опубликовал свои аксиомы на латыни. Он определил арифметику следующими постулатами:
1. 0 есть число.
2. Элемент, непосредственно следующий за числом, есть также число.
3. 0 не является элементом, непосредственно следующим за каким-либо числом.
4.Никакие два числа не имеют одного и того же следующего за ними элемента.
5.Любое свойство, которым обладают 0 и каждый элемент, непосредственно следующий за числом, есть также свойство, которым обладают все числа.
Последняя аксиома есть принцип математической индукции. Если мы обозначим операцию «непосредственно следующий за» символом s, то получаем возможность определить 1 как s0(элемент, непосредственно следующий за 0), 2 как ss0(элемент, непосредственно следующий за элементом, непосредственно следующим за 0), 3 как sss0и так далее. У этого подхода, однако, существует та проблема, что Пеано оставил без определения некоторых из своих терминов, такие, как «непосредственно следующий за» и, конечно, «число», так что мы все еще не знаем, чем являютсячисла.
Основополагающий вклад в решение этой проблемы внес Фридрих Людвиг Готтлоб Фреге (1848-1925). Этот вклад казался отправным пунктом для того, чтобы математика могла занять подобающее ей высшее место в иерархии человеческой мысли, а на деле оказался причиной ее падения. Фреге считают основателем математической логики, так как ему удалось создать превосходную логическую схему, которая должна была утвердить математику в качестве краткого конспекта сушеной человеческой мысли. Для достижения этого ему было необходимо понятие числа, и, чтобы создать его, он построил в своем труде Grundlagen der Arithmetik(Основания арифметики, 1884) концепцию множества. Множество — это просто собрание различных объектов, например, {Том, Дик, Гарри}. Множества были введены в математику Кантором, а в течение последующих десятилетий теорию множеств усовершенствовали Эрнст Цермело (1871-1953) и Адольф Френкель (1891-1965), которые сформулировали точные утверждения о свойствах множеств, о том, как их строить (то, чего Кантору объяснить не удалось) и как с ними обращаться. Поэтому современная общепринятая теория множеств известна как теория Цермело-Френкеля.
Фреге предложил считать числа названиями множеств определенного вида. Чтобы сделать свое определение точным, он ввел понятие расширениясвойства, как множества, состоящего из всех объектов, этим свойством обладающих. О названии «расширение» лучше всего думать как о слове, произошедшем от словосочетания «расширенный набор». Так, расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» является множество, состоящее из всехмножеств, которые имеют тот же размер. Понятие «иметь такой же размер» в теории множеств вполне определенно: оно означает, что элементы множеств одного размера могут быть поставлены во взаимно однозначное соответствие. Например, множество {Том, Дик, Гарри} имеет такой же размер как {камень, ножницы, бумага}, поскольку Тома можно привести в соответствие с камнем, Дика с ножницами, а Гарри с бумагой (рис. 10.7). Может показаться, что теория множеств чересчур уж тщательно заботится об определениях: но эта забота совершенно необходима, когда речь идет об основаниях математики. Расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» будет, таким образом, множество, состоящее из множеств {Том, Дик, Гарри}, {камень, ножницы, бумага} и так далее. А теперь мы с грохотом плюхаемся на землю: мы называем это расширение, это множество, числом 3.
Рис. 10.7.Множество объектов имеет тот же самый размер, что и другое множество, если элементы этих множеств могут быть поставлены во взаимно однозначное соответствие. Эти два множества имеют один и тот же размер: если убрать самолетик, они будут иметь разные размеры.
Продолжая, Фреге определил натуральные числа как следующие расширения:
0 есть название расширения свойства «иметь такой же размер, как множество, состоящее из элементов, которые не тождественны самим себе»
(конечно, того, что не тождественно самому себе, не существует).
1 есть название расширения свойства «иметь такой же размер, как множество 0».
2 есть название расширения свойства «иметь такой же размер, как множество, состоящее из множеств 0 и 1»,
и так далее. Решающим моментом этого определения чисел как названий множеств, последовательно определяемых в терминах меньших множеств, является то, что в нем используются термины, взятые из математической логики, а именно «свойство», «равенство» и «отрицание». Это привело Фреге к точке зрения, что математика есть не более чем логика.
Логикой это могло быть, но удовлетворительным не могло. В 1902 г. незадолго до того, как Фреге был готов отправить издателю второй том своего огромного труда Grundgesetze der Arithmetik(Фундаментальные законы арифметики), в котором он возводил все здание математики, опираясь на это определение числа, он получил от Бертрана Рассела знаменитое письмо, указывающее на существование одного несоответствия. Собственные слова Фреге живо передают охвативший его ужас, когда он распечатал письмо Рассела:
Вряд ли ученый [51]может столкнуться с чем-нибудь более нежелательным, чем необходимость сдаться как раз тогда, когда работа закончена. Именно в такое состояние повергло меня письмо мистера Бертрана Рассела, когда работа вот-вот должна была отправиться в печать.
Бертран Рассел (1872-1970) указал Фреге на проблему расширения свойства «не принадлежать самому себе». Предположим, мы рассматриваем множество, состоящее из множеств, которые не являются элементами самих себя. Например, множество, состоящее из «абстрактных идей», является элементом самого себя, поскольку такое множество само является абстрактной идеей, в то время как множество, состоящее из «фруктов», не является элементом самого себя, поскольку само это множество не есть фрукт. Рассел спросил, принадлежит ли самому себе множество всех множеств, не принадлежащих самим себе? Если оно принадлежит самому себе, то оно относится к множествам, не принадлежащим самим себе. Если оно не принадлежит самому себе, то оно относится к множествам, принадлежащим самим себе. Короче говоря, если оно да, то оно нет, а если оно нет, то оно да. Антиномию(противоречие, парадокс) Расселамногократно выражали в более повседневных разговорных терминах, таких как «брадобрей в этом городке бреет всех мужчин, которые не бреются сами: бреет ли брадобрей себя?».
Антиномия Рассела подорвала программу Фреге, а вместе с ней и основания математики. Причина коррозионного действия противоречия состоит в том, что в логике справедлива теорема: если система аксиом теории приводит к противоречию, то любые предложения, которые можно сформулировать в теории, являются ее доказуемыми теоремами. Поэтому, если определения Фреге приводят к противоречию, то из них можно вывести какую угодно теорему, включая «1 = 2» и «√2 есть рациональное число». Следовательно, в качестве оснований арифметики его аксиомы хуже, чем ничего.
Рассел так же глубоко, как и Фреге, был озабочен основаниями математики и в равной мере проявлял интерес к попыткам продемонстрировать, что математика является не более чем ветвью логики. Такова точка зрения логицистической школыфилософии математики. В 1903 г. Рассел публикует свои The principles of mathematics, а его бывший экзаменатор, а теперь коллега по Кембриджу, Альфред Норт Уайтхед (1861-1947), готовит второе издание A treatise on universal algebra. Оба они пришли к соглашению о сотрудничестве в более амбициозном проекте, заключающемся в доказательстве того, что математика в целом есть подмножество логики. Работа, на подготовку которой они потратили десятилетие, в конце концов появилась в виде трех томов Principia mathematicaв 1910, 1912 и 1913 гг. Запланированный четвертый том о геометрии так никогда и не появился. В Principiaиспользовалась тщательно разработанная система обозначений, дающая больше возможностей, чем системы Пеано и Фреге; некоторое представление о ее изощренности можно получить из рис. 10.8, представляющего собой проделанное Расселом и Уайтхедом доказательство того, что 1 + 1 = 2.