Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович (читать книги онлайн без txt) 📗
В процессе оседания газа в черную дыру температура внутренних частей диска станет очень высокой. Такой диск может быть мощным источником рентгеновского излучения. Мощность и спектр излучения в первом приближении такие же, как и от нейтронных звезд — рентгеновских пульсаров. Разумеется, рентгеновское излучение при аккреции газа на черную дыру не может носить характер строго периодических импульсов (как у Геркулеса Х-1 и Центавра Х-3). Но ведь далеко не все рентгеновские пульсары — нейтронные звезда — излучают «секундные» импульсы. Этому может, например, помешать сильное рассеяние или «неблагоприятная» (по отношению к земному наблюдателю) ориентация оси вращения нейтронной звезды. В то же время рентгеновский источник — горячий компактный диск, вращающийся вокруг нейтронной звезды, может из-за своего орбитального движения вокруг «оптической компоненты» периодически затмеваться точно так же, как и рентгеновский пульсар.
Таким образом, в принципе, среди рентгеновских источников — компонент тесных двойных систем могут быть и черные дыры. Решающий тест, позволяющий отличить черную дыру от нейтронной звезды, состоит в определении массы такого рентгеновского источника. К сожалению, эта задача оказывается далеко не простой. Из зависимости лучевых скоростей оптической звезды от времени, вызванной ее орбитальным движением вокруг центра тяжести системы, можно получить только функцию масс (см. § 1), но отнюдь не массу «невидимого» рентгеновского источника. Если бы рентгеновский источник имел пульсирующую строго периодическую компоненту, то в сочетании с анализом кривой лучевых скоростей оптической компоненты можно было бы определить массы каждой из компонент. Но в случае рентгеновского источника, связанного с черной дырой, пульсирующей компоненты в рентгеновском излучении не может быть. При такой ситуации приходится применять разного рода косвенные методы, далеко не всегда надежные.
Рис. 24.1: |
Уже несколько лет обсуждается возможность того, что яркий рентгеновский источник Лебедь Х-1 обусловлен черной дырой. Как известно, этот источник надежно отождествляется с яркой звездой класса В, у которой длины волн спектральных линий меняются с периодом 5,6 дня. И вот появилось сообщение, что длина волны линии излучения ионизованного гелия в спектре этой звезды меняется с тем же периодом, но с противоположной фазой. Если бы эти наблюдения подтвердились, то естественно было бы считать, что эта линия излучения возникает не в атмосфере «оптической» звезды, а в газовой струе около рентгеновского источника или в окружающем его диске. Тогда понятно, почему изменения лучевых скоростей этой линии противоположны по фазе изменениям лучевых скоростей других линий (рис. 24.1). Из измеренного отношения амплитуд лучевых скоростей, как легко понять, непосредственно находится отношение масс. Так как масса оптической звезды класса В около 20M
, а отношение амплитуд лучевых скоростей как будто оказалось равным 1 : 2, то сразу же следовал важнейший вывод, что масса рентгеновской звезды около 10M. Так как верхний предел массы нейтронных звезд около 2,5M, то выходило, что источник Лебедь Х-1 — черная дыра. Большинство исследователей в настоящее время (1983 г.) считают, что компактная рентгеновская компонента Лебедя Х-1 имеет массу, превышающую шесть солнечных, следовательно, является черной дырой.С проблемой сверхмассивных черных дыр должна быть тесно связана общая проблема активности ядер галактик и квазаров, которой уделялось так много времени в астрономии в течение последнего десятилетия.
Теперь настала пора поговорить о приеме гравитационного излучения как методе обнаружения коллапса звезд. Но прежде всего читатель должен получить хотя бы самое общее представление о гравитационных волнах.
Рис. 24.2: |
Из закона всемирного тяготения Ньютона следует, что гравитационная сила убывает с расстоянием как r-2. Заметим, однако, что вызывающее притяжение тело предполагается при этом точечным либо сферическим. Представим себе теперь, что притяжение вызывают массы, движущиеся в пределах области, размеры которой малы по сравнению с расстоянием до точки наблюдения. В этом случае мы можем разделить силу притяжения в точке наблюдения на две части. Первая часть, являющаяся главной, равна GM/r2, где M — сумма масс тел, а r — расстояние от точки наблюдения до центра тяжести системы масс, вызывающих притяжение. Вторая часть силы притяжения носит характер небольшой добавки и зависит от относительного расположения масс. Можно показать, что по порядку величины эта «добавка» равна GMa2/r4. На рис. 24.2 приведена простейшая схема, иллюстрирующая сказанное. Дополнительная сила в этом случае равна
+ - (где положено M1 = M2 = M). Величина, пропорциональная Ma2г, носит название «квадрупольный момент». Квадрупольный момент отличен от нуля не только для системы тел, но и для любого несимметричного тела (например, трехосного эллипсоида). Квадрупольный момент может меняться со временем. Так будет, например, у двойной звездной системы или вращающегося несимметричного тела. В этих случаях он будет меняться со временем строго периодически. Следовательно, на основании ньютоновской теории тяготения обусловленное квадрупольным моментом ускорение «пробной» частицы в точке наблюдения будет также периодически меняться с той же фазой, без всякой «задержки». Ведь теория Ньютона исходит из концепции мгновенного дальнодействия.Обратим теперь внимание на то, что в поле тяготения регистрирующие приборы могут измерять только относительные ускорения, т. е. разность ускорений в двух точках. Относительное ускорение от точечного или сферически-симметричного тела меняется с расстоянием как 1/r3 — это хорошо известное выражение для приливных сил. Квадрупольная составляющая гравитации от системы тел или несимметричного тела вызывает относительное ускорение, равное
GMa2l/r5, где l — расстояние между двумя пробными частицами. Мы видим, что это относительное ускорение очень быстро убывает с расстоянием.Релятивистская теория тяготения в этом пункте радикально расходится с ньютоновской. Согласно общей теории относительности для r > ct (где t — характерное время изменения квадрупольного момента, например, период орбитального движения двойной системы звезд или период осевого вращения несимметричного тела), относительное ускорение, обусловленное квадрупольным моментом, меняется не как r-5, а как r-1. При этом, если изменение со временем квадрупольного момента носит периодический характер, фаза этих относительных ускорений смещена на величину r/cr. Все это означает, что меняющийся со временем квадрупольный момент гравитирующего тела (или системы тел) создает на больших расстояниях специфическое гравитационное поле, имеющее характер распространяющейся со скоростью света волны. Можно показать, что гравитационные волны поперечны и поляризованы.