Краткая история времени... - Хокинг Стивен Уильям (бесплатные версии книг .txt) 📗
Тем не менее их работа имела очень важное значение, ибо показала, что если верна общая теория относительности, то Вселенная могла иметь особую точку, большой взрыв. Но эта работа не давала ответа на главный вопрос: следует ли из общей теории относительности, что у Вселенной должно было быть начало времени – большой взрыв? Ответ на этот вопрос был получен при совершенно другом подходе, предложенном в 1965 г. английским математиком и физиком Роджером Пенроузом. Исходя из поведения световых конусов в общей теории относительности и того, что гравитационные силы всегда являются силами притяжения, Пенроуз показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой в конце концов сжимается до нуля. А раз поверхность этой области сжимается до нуля, то же самое должно происходить и с ее объемом. Все вещество звезды будет сжато в нулевом объеме, так что ее плотность и кривизна пространства-времени станут бесконечными. Иными словами, возникнет сингулярность в некоей области пространства-времени, называемая черной дырой.
На первый взгляд, эта теорема Пенроуза относится только к звездам: в ней ничего не говорится о том, испытала ли вся Вселенная в прошлом большой взрыв. В то время, когда Пепроуз доказал свою теорему, я, будучи аспирантом, отчаянно искал какую-нибудь задачу, чтобы защитить диссертацию. За два года до этого врачи поставили мне диагноз «боковой амиотрофическнй склероз», или моторная болезнь нейронов, и дали понять, что я протяну не больше одного-двух лет. При таких обстоятельствах не было особого смысла работать над диссертацией, ибо я не надеялся дожить до ее завершения. Но прошло два года, а хуже мне не стало. Мои дела шли прекрасно, и я был помолвлен с очаровательной девушкой по имени Джейн Уайлд. Для женитьбы мне требовалась работа, а чтобы ее получить, нужна была докторская степень.
В 1965 г. я прочитал о теореме Пенроуза, согласно которой любое тело в процессе гравитационного коллапса должно в конце концов сжаться в сингулярную точку. Вскоре я понял, что если в теореме Пенроуза изменить направление времени на обратное, так, чтобы сжатие перешло в расширение, то эта теорема тоже будет верна, коль скоро Вселенная сейчас хотя бы грубо приближенно описывается в крупном масштабе моделью Фридмана. По теореме Пенроуза конечным состоянием любой коллапсируюшей звезды должна быть сингулярность; при обращении времени эта теорема утверждает, что в любой модели фридмановского типа начальным состоянием расширяющейся Вселенной тоже должна быть сингулярность. По соображениям технического характера в теорему Пенроуза было введено в качестве условия требование, чтобы Вселенная была бесконечна в пространстве. Поэтому на основании этой теоремы я мог доказать лишь, что сингулярность должна существовать, если расширение Вселенной происходит достаточно быстро, чтобы не началось повторное сжатие (ибо только такие фридмановские модели бесконечны в пространстве).
Потом я несколько лет разрабатывал новый математический аппарат, который позволил бы устранить это и другие технические условия из теоремы о необходимости сингулярности. В итоге в 1970 г. мы с Пенроузом написали совместную статью, в которой наконец доказали, что сингулярная точка большого взрыва должна существовать, опираясь только на то, что верна общая теория относительности и что во Вселенной содержится столько вещества, сколько мы видим. Наша работа вызвала массу возражений, частично со стороны советских ученых, которые из-за приверженности марксистской философии верили в научный детерминизм, а частично и со стороны тех, кто не принимал саму идею сингулярностей как нарушающую красоту теории Эйнштейна. Но с математической теоремой не очень поспоришь, и поэтому, когда работа была закончена, ее приняли, и сейчас почти все считают, что Вселенная возникла в особой точке большого взрыва. По иронии судьбы мои представления изменились, и теперь я пытаюсь убедить физиков в том, что на самом деле при зарождении Вселенной никакой особой точки не было. В следующих главах я покажу, что при учете квантовых эффектов сингулярность может исчезнуть.
В этой главе мы видели, как менее чем за полстолетия изменились представления людей о природе, формировавшиеся не одну тысячу лет. Начало этим изменениям положили открытое Хабблом расширение Вселенной и сознание незначительности нашей собственной планеты среди огромных просторов Вселенной. По мере того как множились экспериментальные и теоретические результаты, становилось все более ясно, что у Вселенной должно быть начало во времени. Наконец в 1970 г. мы с Пенроузом доказали это, исходя из общей теории относительности Эйнштейна. Из нашего доказательства следовало, что общая теория относительности представляет собой неполную теорию; в ней нет ответа на вопрос, как возникла Вселенная, потому что, согласно теории относительности, все физические теории, в их числе и она сама, нарушаются в точке возникновения Вселенной. Однако общая теория относительности и не претендует на роль полной теории: теоремы о сингулярности на самом деле утверждают лишь, что на некоей очень ранней стадии развития размеры Вселенной были очень малы, настолько, что тогда могли быть весьма существенными мелкомасштабные эффекты, которыми занимается уже другая величайшая теория XX века – квантовая механика. Итак, в начале 70-х годов нам пришлось в своих исследованиях Вселенной переключиться с теории чрезвычайно большого на теорию крайне малого. Этой теории, квантовой механике, будет посвящена следующая глава, а затем мы перейдем к обсуждению того, как эти две частные теории можно было бы объединить в единую квантовую теорию гравитации.
4. Принцип неопределенности
Под влиянием успеха научных теорий, особенно ньютоновской теории тяготения, у французского ученого Пьера Лапласа в начале XIX в. выработался взгляд на Вселенную как на полностью детерминированный объект. Лаплас полагал, что должен существовать набор научных законов, которые позволяли бы предсказать все, что может произойти во Вселенной, если только известно полное описание ее состояния в какой-то момент времени. Например, если бы мы знали положения Солнца и планет, отвечающие какому-то моменту времени, то с помощью законов Ньютона мы могли бы вычислить, в каком состоянии оказалась бы Солнечная система в любой другой момент времени. В данном случае детерминизм довольно очевиден, но Лаплас пошел дальше, утверждая, что существуют аналогичные законы для всего, в том числе и для поведения человека.
Доктрина научного детерминизма встретила сильное сопротивление со стороны многих, почувствовавших, что этим ограничивается свободное вмешательство Бога в наш мир; тем не менее эта идея оставалась обычной научной гипотезой еще в самом начале нашего века. Одним из первых указаний на необходимость отказа от детерминизма стали результаты расчетов двух английских физиков, Джона Рэлея и Джеймса Джинса, из которых следовало, что горячий объект типа звезды должен все время излучать бесконечно большую энергию. Согласно известным тогда законам, горячее тело должно в равной мере излучать электромагнитные волны всех частот (например, радиоволны, видимый свет, рентгеновское излучение). Это означает, что должно излучаться одинаковое количество энергии и в виде волн с частотами от одного до двух миллионов миллионов волн в секунду, и в виде волн, частоты которых находятся в интервале от двух до трех миллионов миллионов волн в секунду. А поскольку разных частот бесконечно много, полная излучаемая энергия должна быть бесконечной.
Чтобы избавиться от этого явно абсурдного вывода, немецкий ученый Макс Планк в 1900 г. принял гипотезу, согласно которой свет, рентгеновские лучи и другие волны не могут испускаться с произвольной интенсивностью, а должны испускаться только некими порциями, которые Планк назвал квантами. Кроме того, Планк предположил, что каждый квант излучения несет определенное количество энергии, которое тем больше, чем выше частота волн. Таким образом, при достаточно высокой частоте энергия одного кванта может превышать имеющееся количество энергии и, следовательно, высокочастотное излучение окажется подавленным, а интенсивность, с которой тело теряет энергию, будет конечной.