Геометрия, динамика, вселенная - Розенталь Иосиф Леонидович (лучшие книги без регистрации .txt) 📗
Заметим, что «прямолинейность» силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства
ALPHA << 1, m| = 0,
c
где ALPHA — безразмерная константа взаимодействия, m|
c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.
Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r — расстояние между телом отсчета и материальной точкой), то
F~1/r**2. (19)
Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.
Таким образом, оба закона — следствие особых свойств трехмерного евклидова пространства.
Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.
Однако общие соотношения отражают свойства пространства, и наша цель — демонстрация тесной связи этих свойств и простейшей динамики.
4. ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ(ПРОСТРАНСТВО МИНКОВСКОГО)
Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т. д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.
Специальная теория относительности базируется на двух постулатах.
1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)
2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.
К этому постулату, выдвинутому А.Эйнштейном в 1905 г., мы привыкли. А привычка часто является синонимом тривиальности. В действительности он связан с двумя нетривиальными допущениями. Во-первых, скорость света c не подчиняется обычному классическому правилу сложения скоростей: v| = v| + v| (v| — суммарная скорость, v|
3 2 1 3 1 скорость источника, v| — скорость испущенной материи, в
2 данном случае скорость света). И, во-вторых, этот постулат также связан с утверждением об евклидовости пространства. Отсутствие однородности или неизотропия пространства также привели бы к его нарушению. Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (≥10**13 Гс) электромагнитных полей. В областях, где находятся эти объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).
В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением
(ct)**2 — x**2 — y**2 — z**2 = 0 (20)
или в дифференциальной форме
(cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (21)
Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) — направленный вектор: существует принцип причинности, различающий будущее и прошлое.
В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме
ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (22)
Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.
Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v≠c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v
Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v≤c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v — > c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал
ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = const (23)
относительно вращений и трансляций. [8]
Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.
Инвариантность интервалов ds или s — математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.
Инвариантность интервала ds или s является основой для вывода важнейших следствий теории относительности. чтобы упростить дальнейшие рассуждения, мы ограничимся одной пространственной координатой x. Обобщение на трехмерное пространство (x, y, z) не представляет труда, все сделанные далее выводы при этом сохраняются.
≡=РИС. 4
Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s≥0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.