Занимательная физика. Книга 2 - Перельман Яков Исидорович (лучшие книги читать онлайн бесплатно без регистрации .txt) 📗
в пресной воде (Fresch Water) .............................. FW
в Индийском океане (India Summer) ....................... IS
в соленой воде летом (Summer) .......................... S
в соленой воде зимой (Winter) ............................ W
в Сев. Атлант. океане зимой (Winter North Atlantik) .. WNA
У нас эти марки введены как обязательные с 1909 г. Заметим в заключение, что существует разновидность воды, которая и в чистом виде, без всяких примесей, заметно тяжелее обыкновенной; ее удельный вес 1,1, т. е. на 10% больше, чем обыкновенной; следовательно, в бассейне с такой водой человек, даже не умеющий плавать, едва ли мог бы утонуть. Такую воду назвали «тяжелой» водой; ее химическая формула D2O (входящий в ее состав водород состоит из атомов, вдвое тяжелее атомов обыкновенного водорода, и обозначается буквой D). «Тяжелая» вода в незначительном количестве растворена в обыкновенной: в ведре питьевой воды ее содержится около 8 г.
Тяжелая вода состава D2O (разновидностей тяжелой воды различного состава возможно семнадцать) в настоящее время добывается уже почти в чистом виде; примесь обыкновенной воды составляет около 0,05% [33].
Принимая ванну, не упустите случая проделать следующий опыт. Прежде чем покинуть ванну, откройте ее выпускное отверстие, продолжая лежать на ее дне. По мере того как станет выступать над водою все большая и большая часть вашего тела, вы будете ощущать постепенное его отяжеление. Самым наглядным образом убедитесь вы при этом, что вес, утрачиваемый телом в воде (вспомните, как легко чувствовали вы себя в ванне!), появляется вновь, лишь только тело оказывается вне воды.
Когда такой опыт невольно проделывает кит, очутившись во время отлива на мели, последствия оказываются для животного роковыми: его раздавит собственным чудовищным весом. Недаром киты живут в водной стихии: выталкивающая сила жидкости спасает их от гибельного действия силы тяжести.
Сказанное имеет ближайшее отношение к заголовку настоящей статьи. Работа ледокола основана на том же физическом явлении: вынесенная из воды часть корабля перестает уравновешиваться выталкивающим действием воды и приобретает свой «сухопутный» вес. Не следует думать, что ледокол разрезает лед на ходу непрерывным давлением своей носовой части — напором форштевня. Так работают не ледоколы, а ледорезы. Этот способ действия пригоден только для льда сравнительно незначительной толщины.
Подлинные морские ледоколы — такие, как «Красин» или «Ермак», — работают иначе. Действием своих мощных машин ледокол надвигает на поверхность льда свою носовую часть, которая с этой целью устраивается сильно скошенной под водой. Оказавшись вне воды, нос корабля приобретает полный свой вес, и этот огромный груз (у «Ермака» этот вес доходил, например, до 800 тонн) обламывает лед. Для усиления действия в носовые цистерны ледокола нередко накачивают еще воду — «жидкий балласт».
Так действует ледокол до тех пор, пока толщина льда не превышает полуметра. Более мощный лед побеждается ударным действием судна. Ледокол отступает назад и налетает всей своей массой на кромку льда. При этом действует уже не вес, а кинетическая энергия движущегося корабля; судно превращается словно в артиллерийский снаряд небольшой скорости, зато огромной массы, в таран.
Ледяные торосы в несколько метров высоты разбиваются энергией многократных ударов прочной носовой части ледокола.
Участник знаменитого перехода «Сибирякова» в 1932 г., моряк-полярник Н. Марков, так описывает работу этого ледокола:
«Среди сотен ледяных скал, среди сплошного покрова льда „Сибиряков“ начал битву. Пятьдесят два часа подряд стрелка машинного телеграфа прыгала от „полного назад“ к „полному вперед“. Тринадцать четырехчасовых морских вахт „Сибиряков“ с разгона врезался в лед, крошил его носом, влезал на лед, ломал его и снова отходил назад. Лед, толщиной в три четверти метра, с трудом уступал дорогу. С каждым ударом пробивались на треть корпуса».
Самыми крупными и мощными в мире ледоколами располагает СССР.
Распространено мнение, — даже среди моряков, — будто суда, затонувшие в океане, не достигают морского дна, а висят недвижно на некоторой глубине, где вода «соответственно уплотнена давлением вышележащих слоев».
Мнение это разделял, по-видимому, даже автор «20 тысяч лье под водой»; в одной из глав этого романа Жюль Верн описывает неподвижно висящее в воде затонувшее судно, а в другой упоминает о кораблях, «догнивающих, свободно вися в воде».
Правильно ли подобное утверждение?
Некоторое основание для него, как будто, имеется, так как давление воды в глубинах океана действительно достигает огромных степеней. На глубине 10 м вода давит с силой 1 кг на 1 см2 погруженного тела. На глубине 20 м это давление равно уже 2 кг, на глубине 100 м — 10 кг, 1000 м — 100 кг. Океан же во многих местах имеет глубину в несколько километров, достигая в самых глубоких частях Великого океана более 11 км (Марианская впадина). Легко вычислить, какое огромное давление должны испытывать вода и погруженные в нее предметы на этих огромных глубинах.
Если порожнюю закупоренную бутылку опустить на значительную глубину и затем извлечь вновь, то обнаружится, что давление воды вогнало пробку внутрь бутылки и вся посудина полна воды. Знаменитый океанограф Джон Меррей в своей книге «Океан» рассказывает, что был проделан такой опыт: три стеклянные трубки различных размеров, с обоих концов запаянные, были завернуты в холст и помещены в медный цилиндр с отверстиями для свободного пропуска воды. Цилиндр был спущен на глубину 5 км. Когда его извлекли оттуда, оказалось, что холст наполнен снегообразной массой: это было раздробленное стекло. Куски дерева, опущенные на подобную глубину, после извлечения тонули в воде, как кирпич, — настолько они были сдавлены.
Естественно, казалось бы, ожидать, что столь чудовищное давление должно настолько уплотнить воду на больших глубинах, что даже тяжелые предметы не будут в ней тонуть, как не тонет железная гиря в ртути.
Однако подобное мнение совершенно не обосновано. Опыт показывает, что вода, как и все вообще жидкости, мало поддается сжатию. Сдавливаемая с силой 1 кг на 1 см2 вода сжимается всего только на 1/22 000 долю своего объема и примерно так же сжимается при дальнейшем возрастании давления на каждый килограмм. Если бы мы пожелали довести воду до такой плотности, чтобы в ней плавало железо, необходимо было бы уплотнить ее в 8 раз. Между тем для уплотнения только вдвое, т. е. для сокращения объема наполовину, необходимо давление в 11 000 кг на 1 см2 (если бы только упомянутая мера сжатия имела место для таких огромных давлений). Это соответствует глубине 110 км под уровнем океана!
Отсюда ясно, что говорить о сколько-нибудь заметном уплотнении воды в глубине океанов совершенно не приходится. В самом глубоком их место вода уплотнена лишь на 1100/22000, т. е. на 1/20 нормальной своей плотности, всего на 5% [34]. Это почти не может повлиять на условия плавания в ней различных тел, — тем более, что твердые предметы, погруженные в такую воду, также подвергаются этому давлению и, следовательно, тоже уплотняются.
Не может быть поэтому ни малейшего сомнения в том, что затонувшие суда покоятся на дне океана. «Все, что тонет в стакане воды, — говорит Меррей, — должно пойти ко дну и в самом глубоком океане».
Мне приходилось слышать против этого такое возражение. Если осторожно погрузить стакан вверх дном в воду, он может остаться в этом положении, так как будет вытеснять объем воды, весящий столько же, сколько стакан. Более тяжелый металлический стакан может удержаться в подобном положении и ниже уровня воды, не опускаясь на дно. Точно так же, будто бы, может остановиться на полпути и опрокинутый вверх килем крейсер или другое судно. Если в некоторых помещениях судна воздух окажется плотно запертым, то судно погрузится на определенную глубину и там остановится.
[33]
Тяжелая вода широко применяется в атомной технике, в частности, в атомных реакторах. Она добывается из обычной соды промышленным способом в больших количествах. (Прим. ред.).
[34]
Английский физик Тот вычислил, что если бы земное притяжение внезапно прекратилось и вода сделалась невесомой, то уровень воды в океане поднялся бы в среднем на 35 м (вследствие того, что сжатая вода приобрела бы нормальный объем). «Океан затопил бы 5 000 000 км2 суши, обязанной своим надводным существованием лишь сжимаемости окружающих ее вод океанов» (Берже).