Краткая история времени... - Хокинг Стивен Уильям (бесплатные версии книг .txt) 📗
Исходя из этого, Джон Мичел, преподаватель из Кембриджа, в 1783 г. представил в журнал «Философские труды Лондонского Королевского общества» (Philosophical Transactions of the Royal Society of London) свою работу, в которой он указывал на то, что достаточно массивная и компактная звезда должна иметь столь сильное гравитационное ноле, что свет не сможет выйти за его пределы: любой луч света, испущенный поверхностью такой звезды, не успев отойти от нее, будет втянут обратно ее гравитационным притяжением. Мичел считал, что таких звезд может быть очень много. Несмотря на то что их нельзя увидеть, так как их свет не может до нас дойти, мы тем не менее должны ощущать их гравитационное притяжение. Подобные объекты называют сейчас черными дырами, и этот термин отражает их суть: темные бездны в космическом пространстве. Через несколько лет после Мичела и французский ученый Лаплас высказал, по-видимому, независимо от него аналогичное предположение. Небезынтересно, что Лаплас включил его лишь в первое и второе издания своей книги «Система мира», но исключил из более поздних изданий, сочтя, наверное, черные дыры бредовой идеей. (К тому же в XIX в. корпускулярная теория света потеряла популярность. Стало казаться, что все явления можно объяснить с помощью волновой теории, а в ней воздействие гравитационных сил на свет вовсе не было очевидным).
На самом деле свет нельзя рассматривать как пушечные ядра в теории тяготения Ньютона, потому что скорость света фиксирована. (Пушечное ядро, вылетевшее вверх с поверхности Земли, из-за гравитации будет замедлять полет и в конце концов остановится, а потом начнет падать. Фотон же должен продолжать движение вверх с постоянной скоростью. Как же тогда ньютоновская гравитация может воздействовать на свет?) Последовательная теория взаимодействия света и гравитации отсутствовала до 1915 г., когда Эйнштейн предложил общую теорию относительности. Но даже после этого прошло немало времени, пока стало наконец ясно, какие выводы следуют из теории Эйнштейна относительно массивных звезд.
Чтобы понять, как возникает черная дыра, надо вспомнить о том, каков жизненный цикл звезды. Звезда образуется, когда большое количество газа (в основном водорода) начинает сжиматься силами собственного гравитационного притяжения. В процессе сжатия атомы газа все чаще и чаще сталкиваются друг с другом, двигаясь со все большими и большими скоростями. В результате газ разогревается и в конце концов становится таким горячим, что атомы водорода, вместо того чтобы отскакивать друг от друга, будут сливаться, образуя гелий. Тепло, выделяющееся в этой реакции, которая напоминает управляемый взрыв водородной бомбы, и вызывает свечение звезды. Из-за дополнительного тепла давление газа возрастает до тех пор, пока не уравновесит гравитационное притяжение, после чего газ перестает сжиматься. Это немного напоминает надутый резиновый шарик, в котором устанавливается равновесие между давлением воздуха внутри, заставляющим шарик раздуваться, и натяжением резины, под действием которого шарик сжимается. Подобно шарику, звезды будут долго оставаться в стабильном состоянии, в котором выделяющимся в ядерных реакциях теплом уравновешивается гравитационное притяжение. Но в конце концов у звезды кончится водород и другие виды ядерного топлива. Как ни парадоксально, но чем больше начальный запас топлива у звезды, тем быстрее оно истощается, потому что для компенсации гравитационного притяжения звезде надо тем сильнее разогреться, чем больше ее масса. А чем горячее звезда, тем быстрее расходуется ее топливо. Запаса топлива на Солнце хватит примерно на пять тысяч миллионов лет, но более тяжелые звезды израсходуют свое топливо всего за сто миллионов лет, т. е. за время, гораздо меньшее возраста Вселенной. Израсходовав топливо, звезда начинает охлаждаться и сжиматься, а вот что с ней происходит потом, стало понятно только в конце 20-х годов нашего века.
В 1928 г. Субраманьян Чандрасекар, аспирант из Индии, отправился по морю в Англию, в Кембридж, чтобы пройти там курс обучения у крупнейшего специалиста в области общей теории относительности Артура Эддингтона. (Говорят, в начале 20-х годов один журналист сказал Эддингтону, что он слышал, будто в мире всего три человека понимают общую теорию относительности. Эддингтон, помолчав, сказал: «Я думаю – кто же третий?»). Во время своего путешествия из Индии Чандрасекар вычислил, какой величины должна быть звезда, чтобы, израсходовав целиком свое топливо, она все же могла бы противостоять воздействию собственных гравитационных сил. Чандрасекар рассуждал так. Когда звезда уменьшается, частицы вещества очень сильно сближаются друг с другом, и в силу принципа запрета (исключения) Паули их скорости должны все больше различаться. Следовательно, частицы стремятся разойтись и звезда расширяется. Таким образом, радиус звезды может удерживаться постоянным благодаря равновесию между гравитационным притяжением и возникающим в силу принципа Паули отталкиванием, точь-в-точь как на более ранней стадии развития звезды гравитационные силы уравновешивались ее тепловым расширением.
Однако Чандрасекар понимал, что отталкивание, обусловленное принципом Паули, не беспредельно. Согласно теории относительности, максимальная разница скоростей частиц вещества в звезде равна скорости света. Это значит, что, когда звезда становится достаточно плотной, отталкивание, обусловленное принципом Паули, должно стать меньше, чем гравитационное притяжение. Чандрасекар рассчитал, что если масса холодной звезды более чем в полтора раза превышает массу Солнца, то эта звезда не сможет противостоять собственной гравитации. (Данное значение массы сейчас называют пределом Чандрасекара). Приблизительно в то же время аналогичное открытие сделал советский физик Л. Д. Ландау.
Выводы Чандрасекара и Ландау имели важные следствия относительно судьбы звезд с большой массой. Если масса звезды меньше предела Чандрасекара, то она в конце концов может перестать сокращаться, превратившись в белого карлика – одно из возможных конечных состояний звезды. Белый карлик имеет в радиусе несколько тысяч километров, плотность – сотни тонн на кубический сантиметр и удерживается в равновесии благодаря отталкиванию электронов в его веществе, отталкиванию, которое возникает из-за принципа Паули. На небе видно немало белых карликов. Одним из первых был открыт белый карлик, вращающийся вокруг Сириуса – самой яркой звезды на ночном небе.
Ландау показал, что звезда может оказаться и в другом конечном состоянии, предельная масса которого равна одной-двум массам Солнца, а размеры даже меньше, чем у белого карлика. Эти звезды тоже должны существовать благодаря возникающему из-за принципа Паули отталкиванию, но не между электронами, а между протонами и нейтронами. Поэтому такие звезды получили название нейтронных звезд. Их радиус не больше нескольких десятков километров, а плотность – сотни миллионов тонн на кубический сантиметр. Когда Ландау предсказал нейтронные звезды, наблюдать их никто не умел, а реальная возможность их наблюдения появилась значительно позже.
Если масса звезды превышает предел Чандрасекара, то, когда ее топливо кончается, возникают большие сложности. Чтобы избежать катастрофического гравитационного коллапса, звезда может взорваться или каким-то образом выбросить из себя часть вещества, чтобы масса стала меньше предельной. Трудно, однако, поверить, что так происходит со всеми звездами независимо от их размеров. Как звезда узнает, что ей пора терять вес? А даже если бы каждой звезде удалось потерять в весе настолько, чтобы избежать коллапса, то что произошло бы, если бы мы увеличили массу белого карлика или нейтронной звезды так, чтобы она превысила бы предел? Может быть, тогда произошел бы коллапс и плотность звезды стала бесконечной? Эддингтон был так этим поражен, что отказался верить результату Чандрасекара. Он считал просто невозможным, чтобы звезда сколлапсировала в точку. Такой позиции придерживалось большинство ученых: сам Эйнштейн заявил в своей статье, что звезды не могут сжиматься до нулевых размеров. Враждебное отношение ученых, в особенности Эддингтона, который был первым учителем Чандрасекара и главным авторитетом в исследовании строения звезд, вынудили Чандрасекара оставить работу в прежнем направлении и переключиться на другие задачи астрономии, такие, как движение звездных скоплений. Однако Нобелевская премия 1983 г. была, по крайней мере частично, присуждена Чандрасекару за ранние работы, связанные с предельной массой холодных звезд.