Мыслящая Вселенная - Мизун Юрий Гаврилович (хорошие книги бесплатные полностью txt) 📗
В обычное время скорость ветра не превышает 10 м/с. Во время бурь она увеличивается в десятки раз. Образуются мощные вихри. Смерчи-вихри поднимают в воздух массы рыхлого грунта, и все заволакивает пылью. Затем пылевые облака перехватывают значительную часть солнечной энергии. Поэтому температура поверхности планеты падает. Это происходит очень неравномерно. Создаются большие местные перепады температуры. А это еще больше усиливает ветры. Во время пылевых бурь в атмосферу поднимаются сотни миллионов тонн пыли. Основная масса пыли переносится близко от поверхности планеты. Во время пылевой бури энергию Солнца перехватывает атмосфера. Поэтому она и нагревается больше, чем обычно. Пылевые бури на Марсе длятся 50 — 100 земных суток.
На Земле и Венере работает парниковый эффект. Полученное от Солнца тепло удерживается атмосферой за счет разницы атмосферного поглощения в видимой и дальней инфракрасной областях спектра солнечного излучения. На Марсе все происходит наоборот. Там работает антипарниковый эффект. Он вызван тем, что пылевые облака на Марсе непрозрачны для приходящего от Солнца излучения. Зато они прозрачны для того излучения, которое идет от поверхности планеты. Поэтому планета свое тепло отдает в космическое пространство (у нее нет теплицы в виде озонного слоя, как у Земли), а тепло от Солнца недополучает из-за сильной запыленности атмосферы. Поэтому и происходит выстуживание поверхности планеты. Конечно, когда нет пылевых бурь и атмосфера Марса чистая, ситуация в энергетическом плане более благоприятная.
Особенность атмосферы Марса не только в ее составе и очень низкой плотности. Она и в том, что атмосфера неспособна задерживать ультрафиолетовое излучение Солнца.
Одним из самых интересных объектов на Марсе специалисты считают Элладу. Эта чаша диаметром около 2000 километров является уникальной. Ее можно даже наблюдать с Земли. Это светлое образование имеет форму правильного круга. Вначале, до полетов космических аппаратов полагали, что это некая огромная воронка с плоским дном. Но снимки, полученные космическими аппаратами, показали, что все «дно» Эллады покрыто развитой системой горных хребтов, которые ничем не напоминают то, что видно за пределами этого круга. На самом деле Эллада является гигантской чашей правильной формы. Как ни удивительно, она служит местом хранения (чуланом) пылевых бурь на Марсе. Поэтому ее еще называют «сундуком Пандоры». При наблюдении с Земли создавалось впечатление, что видно дно этой чаши. На самом деле за дно принимали светлые облака марсианской пыли. Дело в том, что даже в условиях спокойной атмосферы в небе над Элладой имеются облака. Это не только облака из пыли, но и облака из конденсата углекислого газа. Они грядами располагаются вдоль краев этой огромной чаши.
Поразительно то, что горные хребты, каких больше нигде нет на Марсе, упрятаны в чашу на глубину 5 километров. Ответа на этот вопрос пока нет. Остается неясным, почему яркость спокойного розового неба Марса намного меньше, чем в пылевую бурю. И в то же время она почти в 100 раз больше, чем это следует из расчетов яркости для незапыленной атмосферы Марса. У Марса небо розовое, потому что в атмосфере постоянно присутствует заметное количество мелкой пыли. На ней и рассеивается солнечный свет. При рассеянии белого света (состоящего из всех цветов радуги) важны свойства рассеивающего вещества, в данном случае пыли. Важны прежде всего размеры частиц-пылинок, на которых и происходит рассеяние. Мелкие частицы пыли остаются в атмосфере Марса в течение нескольких лет.
На Земле подобные частицы достаточно быстро вымываются дождями. Но на Марсе дождей нет, поэтому атмосфере очиститься трудно. Ведь без дождя только под действием силы притяжения с высоты 10 километров такая частица размером в один микрометр (1 мкм) будет падать в течение нескольких сотен марсианских суток.
Что касается грунта Марса, то в нем содержится железа 12–14 %. До 20 % в нем кремния. Имеется много других элементов: кальция 4 %, алюминия 2–4 %, магния около 5 %. Имеется титан. Серы в грунте содержится 3 %.
Высокое содержание железа в грунте говорит о том, что Марс сильно отстал от Земли в смысле процессов гравитационного разделения (дифференциации). Если это разделение завершилось, планета имеет солидное ядро, которое намного тяжелее остальной части планеты. Так, в ядре Земли плотность вещества в 10 раз больше, чем плотность воды в нормальных условиях (10 г/см3). У Марса пока что сформировалось очень маленькое ядро. В нем сосредоточено всего 5–9 % всей массы планеты. Внутреннее строение Марса показано на рисунке 107. Литосфера Марса в отличие от литосферы Земли очень толстая.
Еще несколько слов о спутниках Марса. Спутники Марса Фобос и Деймос были открыты в 1877 году. Все любят цитировать Д. Свифта, который еще за 157 лет до открытия спутников Марса в знаменитых «Путешествиях Гулливера» писал о том, что астрономы Лапуты «открыли… две меньшие звезды, или спутника, ко
Рис. 107. Схема внутреннего строения Марса
торые обращаются вокруг Марса, причем внутренняя отстоит от центра планеты точно на три ее диаметра, а внешняя — на пять». Спутники Марса показаны на рисунке 108. Они очень маленькие и находятся почти на круговых орбитах. Они представляют
Рис. 108. Орбиты Фобоса и Деймоса 235
собой типичные астероиды, которые когда-то были захвачены Марсом. Фобос обращается вокруг Марса с периодом 7 часов 39 минут, а Деймос — с периодом 30 часов 18 минут. Это обращение весьма своеобразное. Фобос восходит на западе и заходит на востоке. Это повторяется три раза в сутки. Размеры большой и малой осей Фобоса равны 27 и 20 километрам, а Деймоса — 16 и 10 километрам. Оба спутника совершают синхронное движение вокруг Марса. Своими большими осями они всегда направлены к центру Марса. Как и наша Луна, они всегда направлены к своей планете одной и той же стороной.
Плотность Фобоса почти вдвое больше плотности воды. Общая его масса примерно в 7 миллионов раз меньше массы Луны. Ускорение свободного падения на среднем уровне поверхности Фобоса в 1400 раз меньше, чем у поверхности Земли. Это значит, что человек в среднем весил бы там 60–70 граммов. При большом желании человек мог бы преодолеть силу притяжения Фобоса и отправиться в космическое пространство. Для этого ему надо было бы подпрыгнуть на высоту 2,6 метра. Что касается Деймоса, то его ускорение свободного падения в два раза меньше.
В заключение описания Марса у нас есть возможность вернуться непосредственно к проблеме жизни вне Земли. Дело в том, что на Марс были посланы космические аппараты «Викинг». Их основной задачей был поиск возможных форм жизни на планете. Людям всегда очень хотелось, чтобы на Марсе была разумная жизнь. Поэтому возникла легенда о каналах на Марсе, которые прорыты разумными существами. Высказывались соображения и о растительности на Марсе. Поводы к этому были. О растительности на Марсе как будто свидетельствовали такие факты. Каждые полгода по марсианскому календарю с началом весны в одном из полушарий Марса появляется темная окантовка вокруг тающей полярной шапки. Затем она постепенно распространяется к экватору со скоростью примерно 30 километров в сутки. Когда она достигает экватора, то не останавливается, а переходит через него. Затем, но уже через полгода, такая же окантовка (волна) движется подобным образом, но уже от другого полюса. Это происходит регулярно. Когда волна прошла, области высоких широт светлеют, никакой окантовки нет. Приводилось и еще одно доказательство существования растительности на Марсе. После пылевых бурь на поверхность планеты выпадает пыль. Но наблюдения показывают, что контрасты между темными и светлыми областями при этом не меняются. Если бы там была растительность, то это было бы понятно. Эти доводы «за». Но есть доводы и «против». Так, в условиях очень сухой марсианской атмосферы вегетационный период в развитии растительности должен приходиться на весну. В это время тает полярная шапка и в атмосфере появляется хоть немного влаги. Далее можно рассуждать, что эта влага постепенно распространяется по направлению к экватору. Поэтому она способствует росту растительности. Однако прямые измерения с помощью наземных инфракрасных спектроскопов не позволили обнаружить органические молекулы СН. Если бы они там были, то они выдали бы себя своим излучением в виде характерных полос вблизи длины волны 3,5 мкм. Но измерения этих полос не обнаружили.