Откуда и что на флоте пошло - Дыгало Виктор Ананьевич (лучшие книги без регистрации txt) 📗
Плоскость, в которой он лежит, как бы разделяет земной шар пополам и уравнивает его половины. Окружность экватора от точки, принятой за нуль, разделили на 360 градусов долготы — по 180° к востоку и западу. К югу и к северу от экватора на глобусе до самых полюсов нанесли малые круги, параллельные экватору. Их так и назвали — параллели, а экватор стал служить началом отсчета географической широты. Дуги меридианов, перпендикулярные экватору, в Северном и Южном полушариях под углом друг к другу сошлись на полюсах. «Меридиан» по-латыни значит «полуденный». Это название, конечно, не случайно, оно показывает, что на всей линии меридиана, от полюса до полюса, полдень (впрочем, как и в любой другой момент) наступает одновременно. От экватора к северу и к югу дуги меридианов разбили на градусы — от 0 до 90, назвав соответственно градусами северной и южной широты.
Теперь, чтобы найти точку на карте или глобусе, достаточно было указать ее широту и долготу в градусах.
Географическая координатная сетка была наконец построена.
Но одно дело — найти точку на карте и совсем иное — отыскать ее в открытом море. Несовершенные карты, магнитный компас и примитивный угломерный инструмент для определения вертикальных углов — вот и все, чем располагал моряк, отправляясь в дальнее плавание. С арсеналом даже таких навигационных приборов прийти в пункт, который находится в пределах видимости или пусть даже за горизонтом, — дело несложное. Если, конечно, вершины далеких гор, расположенных у этого пункта, были видны над горизонтом. Но стоило моряку отойти в море подальше, как берега пропадали из виду и со всех сторон судно обступали однообразные волны. Даже если мореплаватель знал точное направление, которое должно привести его к цели, то и тогда трудно было рассчитывать на успех, так как капризные ветры и неизученные течения всегда сносят судно с намеченного курса. Это отклонение от курса моряки называют дрейфом.
Но и при отсутствии дрейфа выбрать нужное направление, пользуясь обычной картой, и провести по нему судно практически невозможно. И вот почему. Допустим, что, вооружившись обыкновенной картой и компасом, мы задумали плавание вне видимости берегов из точки А в точку Б. Соединим эти точки прямой. Допустим теперь, что эта прямая в точке А ляжет точно по курсу 45°. Другими словами, линия АБ в точке А будет расположена под углом 45° к плоскости меридиана, проходящего через точку А. Направление это нетрудно удержать по компасу. И мы пришли бы в точку Б, но при одном условии: если бы меридианы были параллельны и наша линия курса и в точке Б соответствовала направлению 45°, как и в точке А. Но в том-то и дело, что меридианы не параллельны, а постепенно сходятся под углом друг к другу. Значит, и курс в точке Б будет не 45°, а несколько меньше. Таким образом, чтобы прийти из точки А в точку Б, нам пришлось бы все время подворачивать вправо.
Если же, выйдя из точки А, мы будем постоянно держать курс по нашей карте 45°, то точка Б останется справа от нас, мы, продолжая идти этим курсом, пересечем все меридианы под одним и тем же углом и по сложной спирали приблизимся в конце концов к полюсу.
Спираль эта называется локсодромия. По-гречески это значит «косой путь». Всегда можно подобрать такую локсодромию, которая приведет нас в любую точку. И, пользуясь обычной картой, пришлось бы сделать много сложных вычислений и построений. Вот это-то моряков и не устраивало. Не одно десятилетие они ждали такую карту, по которой удобно будет прокладывать любые курсы и плавать по любым морям.
И вот в 1589 г. известный математик и картограф фламандец Герард Меркатор придумал карту, которая наконец удовлетворила моряков и оказалась настолько удачной, что до сих пор ничего лучшего никто не предложил. Моряки всего мира и сегодня пользуются этой картой. Она так и называется: меркаторская карта, или карта равноугольной цилиндрической меркаторской проекции.
Основания, заложенные в построение этой карты, гениально просты. Невозможно, конечно, восстановить ход рассуждений Г. Меркатора, но предположим, что рассуждал он так.
Допустим, что все меридианы на глобусе (который довольно точно передает взаимное расположение океанов, морей и суши на Земле) сделаны из проволоки, а параллели — из упругих нитей, которые легко растягиваются (резины в то время еще не знали). Разогнем меридианы так, чтобы они из дуг превратились в параллельные прямые, прикрепленные к экватору. Поверхность глобуса превратится в цилиндр из прямых меридианов, пересеченных растянувшимися параллелями. Разрежем этот цилиндр по одному из меридианов и расстелем на плоскости. Получится географическая сетка, но меридианы на этой сетке не будут сходиться, как на глобусе, в точках полюсов. Прямыми параллельными линиями они будут идти вверх и вниз от экватора, а параллели — пересекать их везде под одним и тем же прямым углом.
Круглый островок у экватора как был на глобусе круглым, так и на этой карте останется круглым, в средних широтах такой же островок значительно растянется по широте, а в районе полюса он будет вообще выглядеть как длинная прямая полоса. Взаимное расположение суши, моря, конфигурация материков, морей, океанов на такой карте изменятся до неузнаваемости. Ведь меридианы остались такими, какими и были, а параллели-то растянулись.
Плавать, руководствуясь такой картой, конечно, было невозможно, но это оказалось поправимым — надо было только увеличивать расстояние между параллелями. Но конечно, не просто увеличить, а в точном соответствии с тем, насколько растянулись параллели при переходе на меркаторскую карту. На карте, построенной с помощь такой сетки, круглый островок и у экватора, и в любом другом участке карты оставался круглым. Вот только, чем ближе было к полюсу, тем больше места занимал он на карте. Другими словами, масштаб на такой карте от экватора к полюсам увеличивался, зато очертания объектов, нанесенных на карту, получались почти без изменений.
А как же учесть изменение масштаба к полюсам? Конечно, можно для каждой широты высчитать масштаб отдельно. Только очень хлопотным делом будет такое плавание, в котором после каждого передвижения к северу или югу придется делать довольно сложные расчеты. Но оказывается, что на меркаторской карте таких расчетов делать не приходится. Карта заключена в рамку, на вертикальных сторонах которой нанесены градусы и минуты меридиана. У экватора они покороче, а чем ближе к полюсу, тем длиннее. Пользуются рамкой так: расстояние, которое нужно измерить, снимают циркулем, подносят к той части рамки, которая находится на широте измеряемого отрезка и смотрят, сколько минут в нем уложились. А так как минута и градус на такой карте изменяются по величине в зависимости от широты, а на самом-то деле остаются всегда одинаковыми, именно они и стали основанием для выбора линейных мер, которыми моряки измеряли свой путь.
Во Франции была своя мера — лье, равное 1/20 градуса меридиана, что составляет 5537 м. Англичане измеряли свои морские дороги лигами, которые тоже представляют собой дробную часть градуса и по величине составляют 4828 м. Но постепенно моряки всего мира сошлись на том, что удобнее всего пользоваться для измерения расстояний на море величиной дуги, соответствующей одной угловой минуте меридиана. Так до сих пор и измеряют моряки свои пути и расстояния именно минутами дуги меридиана. А чтобы придать этой мере название, похожее на названия других путевых мер, окрестили минуту меридиана милей. Ее длина составляет 1852 м.
Слово «миля» нерусское, поэтому сперва заглянем в Словарь иностранных слов. Там написано, что слово это английское. Потом сообщается, что мили бывают разные: географическая миля, равная 7420 м, сухопутные, различные по величине в разных государствах, наконец, морская миля, равная 1852,3 м [98].
Тут все верно, кроме английского происхождения слова; на самом деле оно латинское. В древних книгах миля встречалась довольно часто и означала тысячу двойных шагов. Оттуда, из Рима, а не из Англии, впервые пришло к нам это слово. Так что в словаре ошибка. Но эту ошибку можно понять и простить, так как составитель словарной статьи имел, конечно, в виду международную морскую, или, как англичане ее называют, адмиралтейскую, милю. В петровские времена она пришла к нам именно из Англии. У нас ее так и называли — английская миля. Иногда и сегодня ее называют так же.
98
В 1928 г. Международное гидрографическое бюро приняло округленное значение средней величины, равное 1852 м. СССР присоединился к этому решению в 1931 г. (Циркуляр ГУ ВМС № 317 от 8 июля 1931 г.). — Прим. авт.