Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - Коллектив авторов (читать книги полные TXT) 📗
Радиоактивные свойства изотопов фермия. Высота полоски соответствует периоду полураспада в логарифмическом масштабе. Двойная штриховка означает, что основной для этого изотопа вид распада — спонтанное деление, а одинарная — электронный захват. Не заштрихованы колонки альфа-активных изотопов
После детального исследования свойств фермия-258 стало ясно: единственным реальным путем к еще более тяжелым трансурановым элементам остаются ядерные реакции с участием относительно тяжелых ионов.
Между прочим, большинство известных сейчас изотопов фермия получено именно этим методом: при бомбардировке урана, плутония, калифорния ионами кислорода, углерода и альфа-частицами. В частности, в опытах, выполненных при участии автора этой статьи в Дубне, в Лаборатории ядерных реакций, был впервые получен фермий-247. Удалось установить, что этот альфа-активный изотоп существует в двух состояниях с периодами полураспада 35 и 9 секунд.
Химия фермия
По химическим свойствам фермий сходен с другими актиноидами. Его основное валентное состояние 3-к Лучше всего изучено поведение фермия в ионообменных колонках. Все опыты по химии фермия выполнены на невесомых и невидимых глазу количествах, обнаруживаемых лишь по радиоактивности.
Типичный для работы с ультрамалыми количествами веществ опыт по химии фермия был выполнен в 1971 г. В нём участвовали сотрудники Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне и сотрудники Института физической химии АН СССР под руководством доктора химических наук Н.Б. Михеева. Несколько десятков миллиграммов окиси- закиси урана-238 в течение пяти часов облучали на циклотроне ионами кислорода-18. Пучок ионов был настолько мощен (около 100 тыс. миллиардов частиц в секунду), что, не будь непрерывной циркуляции воды через массивную медную подложку мишени, последняя расплавилась и испарилась бы в считанные минуты. Ядра кислорода, сталкиваясь с ядрами урана, в небольшой доле случаев полностью сливались с ними, сбрасывая избыточную энергию испусканием четырех нейтронов. В результате получался фермий-252, излучавший альфа-частицы с периодом полураспада 25 часов.
Прежде всего считанные атомы фермия надо было отделить от массы атомов урана. В боксе с толстыми стенками из стали и стекла облученный уран со всеми образовавшимися продуктами смывался с подложки азотной кислотой. При химических манипуляциях немногочисленные атомы фермия могли быть потеряны из-за адсорбции на стенках сосудов, осадках, коллоидных частицах. Чтобы этого не произошло, в полученный раствор добавили редкоземельный элемент самарий, но химическим свойствам близкий к фермию. Умышленно создавали большую концентрацию самария, чтобы всякого рода центры адсорбции «насыщались» именно самарием. А при химических превращениях атомы самария играли роль носителя, увлекая за собой считанные атомы родственного фермия.
Далее в полученную смесь элементов добавляли плавиковую кислоту. Образующиеся при этом фториды актиноидов начиная с плутония и самарий выпадали в осадок, а уран оставался в растворе. В ходе дальнейших химических процедур было установлено, что хлориды самария и фермия в водно-спиртовых растворах восстанавливаются магнием до двухвалентного состояния и фермий сокристаллизуется с самарием в кристаллах SmCl2. Это было первое в мире доказательство существования у фермия еще одной валентности — 2+. Разделить самарий и фермий для дальнейших исследований помогли процессы экстракции и реэкстракции. В конечном счете на платиновом диске был осажден фермий с очень небольшим количеством примесей.
Стоит ли изучать?
Мы уже упоминали о самой большой из когда-либо полученных порции элементного фермия. За три года, к июлю 1972 г., она уменьшилась более чем в 3 тыс. раз в результате радиоактивного распада. Очевидно, делать из фермия что-либо, рассчитанное даже на годичный срок службы, вряд ли целесообразно. Так зачем он вообще нужен?
Казалось бы, фермий — элемент бесполезный. Но, как мы уже знаем, определение радиоактивных свойств фермия-258 позволило сделать вывод о неперспективности термоядерных взрывов для синтеза новых элементов. Разве это не практический выход?
В науке вообще опасно отмахиваться от возможности глубокого изучения чего-либо, будь это объекты физические, биологические или какие-либо другие. Даже самые талантливые и самые прозорливые ученые не всегда могут предвидеть последствия той или иной работы, того или иного открытия. Известно, что всего за пять лет до пуска первого ядерного реактора Эрнест Резерфорд (сам Резерфорд!) в своей лекции заявил: «Перспектива получения полезной энергии при искусственных процессах превращения не выглядит обещающей». А изобретатель циклотрона Э. Лоуренс еще в 1938 г. считал, что, «хотя мы знаем, что материя может быть превращена в энергию, мы ясно осознаем, что разрушение ядерного вещества для получения энергии не сулит больших перспектив, чем охлаждение океана и использование его тепла для производства полезной работы…» Открытие фермия было необходимым шагом для науки, а даст ли практический выход дальнейшее изучение этого элемента, покажет будущее.
Менделевий
Право дать имя новому элементу принадлежит тем, кто его открыл. Девять первых трансурановых элементов впервые получены американскими физиками. Получены, исследованы, распознаны пли, как принято писать, идентифицированы.
Элемент № 101 был впервые получен в начале 1955 г. в Радиационной лаборатории Калифорнийского университета. Этот элемент знаменателен не только тем, что с него начинается счет второй сотни химических элементов.
Почти десять лет синтез и идентификация первого элемента второй сотни заслуженно считались вершиной экспериментального мастерства и в физике, и в химии.
«Для нового элемента было предложено наименование «менделевий»… в знак признания заслуг великого русского химика Д.И. Менделеева, который первый использовал для предсказания химических свойств неоткрытых элементов периодическую систему элементов, принципы которой явились ключом для открытия большинства трансурановых элементов». Это слова из книги Э. Хайда, И. Перлмана, Г. Сиборга «Трансурановые элементы».
На подступах к менделевию
Их было пятеро — деловитых и ироничных, самолюбивых и не чуждых саморекламы, разных по взглядам и убеждениям, но в равной степени увлеченных трансуранами и преданных науке.
Вот имена первооткрывателей менделевия: Гленн Сиборг, Альфред Гиорсо, Бернард Гарвей, Грегори Чоппин, Стенли Томпсон.
Как известно, в химических реакциях можно получить новые вещества, но не новые элементы. Чтобы получать элементы, недостаточно умело распоряжаться электронными оболочками атомов — нужно лезть в ядро. Для многих химических реакций требуется сложнейшее оборудование, но техника, необходимая для ядерных превращений, еще сложнее.
Легче всего вогнать в ядро нейтрон — частицу, не несущую электрического заряда. Конечно, непросто попасть в эту микроскопическую цель и таким «снарядом»: размеры атомов измеряются миллионными долями миллиметра, а диаметр ядра примерно в 100 тыс. раз меньше диаметра атома. Но когда снарядом служит нейтрон, не приходится преодолевать сил отторжения, отталкивания. Помните? «Разноименные полюса притягиваются, одноименные полюса отталкиваются». Это правило одинаково справедливо и для электричества, и для магнетизма. Оно действует и в мире ядерных частиц.
«Внедряя» в ядро нейтрон или нейтроны, получают не только новые изотопы, но и новые элементы. Добавочный нейтрон делает ядро неустойчивым к радиоактивному распаду. Известно несколько видов распада. В одном случае ядро может поделиться на два осколка примерно равной массы — спонтанное деление, и тяжелый элемент превращается в два намного более легких. В другом случае ядро испускает альфа-частицу (ядро гелия), и тогда элемент с порядковым номером Z становится элементом номер Z — 2.