Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - Коллектив авторов (читать книги полные TXT) 📗
Если же 104-й не экагафний, детекторы не зарегистрируют ничего: образовавшиеся атомы не смогут до них добраться, химическая идентификация 104-го элемента методом носителей в газовой фазе окажется невозможной.
В газовом пробнике заменили самариевую мишень на плутониевую, в конце тракта установили детекторы спонтанного деления. Через несколько дней видоизмененный газовый пробник впервые въехал в циклотрон…
Атомы 104-го образуются не часто — опыты должны были идти долго и обязательно непрерывно: кто знает, в какой момент образуются эти атомы? В общей сложности химики провели четырнадцать экспериментов на циклотроне, в ходе которых было зарегистрировано четыре осколка спонтанного деления ядер 104-го. Это в двадцать раз меньше, чем ожидалось. В чем причина?
Проверили все расчеты — ошибки нет. Значит, нужно менять температурный режим. Температура в газовом пробнике была доведена до 350°C. Началась новая серия экспериментов. В ходе этой серии детекторы зарегистрировали восемь атомов 104-го элемента — экспериментаторы рассчитывали на шесть — десять.
После этого можно было делать выводы. Главные из них таковы. Химическим методом подтверждено открытие физиками Объединенного института ядерных исследований нового сверхтяжелого элемента № 104. Его изотоп с массовым числом 260 подвержен спонтанному делению. 104-й элемент — химический аналог гафния. Это первый тяжелый искусственный элемент, не входящий в семейство актиноидов.
Вне циклотрона и пробника
26 марта 1966 г. был закончен последний химический опыт на циклотроне, а через три дня на кафедре радиохимии Московского университета состоялась защита кандидатской диссертации на тему «Использование газообразных соединении для экспрессного непрерывного разделения продуктов ядерных реакций».
Известный физико-химик, ныне академик В.И. Гольданский внес предложение: рекомендовать кандидатскую диссертацию Иво Звары к рассмотрению на ученом совете факультета на предмет присуждения ему ученой степени доктора химических наук. Это предложение было принято, и 17 июня Иво Зваре пришлось «защищаться» вторично. А шестнадцатью днями раньше он докладывал об этой работе на заседании ученого совета Объединенного института ядерных исследований. Здесь же обсуждался вопрос о том, как назвать элемент № 104. Создатели элемента предложили назвать его курчатовием — в честь выдающегося советского физика Игоря Васильевича Курчатова. Ученый совет единогласно поддержал это предложение.
На этом хотелось бы поставить точку, как в романе со счастливым концом, но, оказалось, точку ставить рано.
Открытие 104-го элемента в Дубне было поставлено под сомнение американскими исследователями. Почему? Прежде всего потому, что период полураспада изотопа 260Ku по спонтанному делению (первоначально он был определен в 0,3 секунды, позже уточнен как величина, около 0,1 секунды) оказался несравненно больше, чем предсказывали американские теоретики.
И еще можно допустить, что существует генетическая связь между неверием американцев в курчатовий и уничтожающей, в общем-то, критикой учеными Дубны американских работ по нобелию и лоуренсию… Чем было подкреплено неверие, чем аргументирована критика американцев? В 1969–1970 гг. в Беркли начали изучать альфа-распад изотопов элемента № 104. Появились сообщения о получении трех изотопов 104-го, в том числе относительно долгоживущего изотопа 259104 (его период полураспада 4,5 секунды). Была предпринята попытка получить и спонтанно делящийся изотоп 260104 при бомбардировке кюрия ионами кислорода (96+8 = 94+10 = 104). И вот что доложил доктор Гиорсо на конференции по трансурановым элементам в Хьюстоне (1969 г.)
«На прошлой педеле мы облучили мишень из кюрия ионами кислорода… в надежде найти спонтанно делящуюся активность, которая могла бы быть обусловлена распадом 260104, если бы он имел период полураспада более короткий, чем 0,1 секунды (100 мс). Мы зарегистрировали активность с периодом полураспада между 10 и 30 мс, но мы еще не идентифицировали ее. Конечно, она могла быть обусловлена 260104, хотя кажется, что такой период полураспада слишком длинный. Нам кажется более вероятным, что период полураспада 260104 находится в микросекундной области».
И все. Научных сообщений об исследовании изотопа 261104 от группы Гиорсо не последовало. Нигде больше не упоминалось и о наблюдавшейся 30-миллисекундной активности. Тем не менее в устных выступлениях и в обзорных статьях и Сиборг, и Гиорсо не раз высказывали сомнения в правильности дубненских результатов. Их доводы не отличались конкретностью: «…я считаю, что по спонтанному делению вообще ничего определить нельзя» (Гиорсо); «…но поскольку элемент живет только десятые доли секунды, химия, естественно, но может быть убедительной» (Сиборг). Здесь уместно вспомнить, что совсем недавно, лет тридцать — сорок назад, апологетам классических методов химического анализа представлялись неубедительными результаты радиохимических исследований, проведенных на микроколичествах.
Время так же относительно, как и масса; экспресс-методы анализа короткоживущих изотопов и их соединений создаются в наши дни. И, если возникают сомнения в результатах, полученных этими методами, опровергать их надо аргументированно. Аргументы же типа «не верю» и «этого не может быть, потому что этого не может быть никогда», не убедительны, даже если их высказывают большие ученые, много, действительно много сделавшие для науки о трансурановых элементах.
Но, так или иначе, не имея убедительных доводов против дубненских работ по 104-му элементу, ученые из Беркли позволили себе назвать этот элемент по-своему — резерфордием.
Эксперименты химиков: часть третья
Целью новых дубненских экспериментов, о которых сообщил журнал «Радиохимия» (1972, № 1), была повторная химическая идентификация элемента № 104 как экагафния. На этот раз экспериментировали с изотопом 259Ku, время жизни которого намного больше, чем 280Ku.
Была создана новая методика, позволяющая отфильтровывать не только атомы более легких, чем курчатовий, трансурановых элементов, но и короткоживущий изотоп 260Ku.
В циклотроне облучали мишени из окиси плутония (95% 242Pu). Снарядами, как и в прошлых опытах, служили ускоренные ионы неона-22 с энергией от 110 до 125 Мэв: именно при таких энергиях образуется наибольшее число атомов курчатовия. А энергия 119 Мэв соответствует максимуму образования ядер изотопа 259Ku в реакции с вылетом пяти нейтронов.
Небольшую часть плутониевой мишени покрыли слоем окиси самария. Это сделали для того, чтобы в параллельной реакции образовывался и ближайший аналог курчатовия — гафний. В другой побочной реакции образовывался и один из радиоактивных изотопов скандия. Скандий — аналог лантаноидов и актиноидов; хлориды этих элементов примерно одинаково нелетучи. Следовательно, попутно образующиеся спонтанно делящиеся изотопы актиноидов (фермий-256, в частности) в хроматографической колонке оседали бы вместе со скандием.
Хроматографическая колонка в предыдущей фразе упомянута не случайно. Установка, на которой предстояло заново идентифицировать элемент № 104, представляла собой именно такую колонку, но усложненную, специально созданную для этих опытов. Правильнее было бы назвать ее термохроматографической: строго определенный температурный режим был необходимым условием. Ядра, вылетавшие из мишени, тормозились в потоке азота, который и транспортировал их в колонку. Туда же, в самое ее начало, подавали хлорирующие агенты — TiCl4 и SOCl2.
Сама колонка состояла из трех участков, трех зон. Эту ядерную трассу можно сравнить с дистанцией стипль-чеза — скачек с препятствиями: образующимся атомам пройти эту трассу было очень нелегко. На маршрут направляли всевозможные элементы, хлориды которых обладают разными свойствами. Большинство «всадников» сходило с дистанции задолго до финиша, хотя длина трассы составляла всего 195 см…