Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов (электронные книги без регистрации TXT) 📗
Любое пористое горючее вещество, например опилки, будучи пропитанными голубоватой холодной жидкостью — жидким кислородом, становится взрывчатым веществом. Такие вещества называются оксиликвитами и в случае необходимости могут заменить динамит при разработке рудных месторождений.
Ежегодное мировое производство (и потребление) кислорода измеряется миллионами тонн. Не считая кислорода, которым мы дышим.
Промышленность кислорода
Так как горением в таком газе можно получить очень высокие температуры, полезные во многих… применениях, то быть может, что придет время, когда указанным путем станут на заводах и вообще для промышленности обогащать воздух кислородом.
Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке во многих странах. Но от идеи до технического воплощения часто лежит «дистанция огромного размера»…
В Советском Союзе особенно быстрое развитие кислородной промышленности началось в годы Великой Отечественной войны, после изобретения академиком П. Л. Капицей турбодетандера и создания мощных воздухоразделительных установок.
Еще Карл Шееле получал кислород по меньшей мере пятью способами: из окиси ртути, сурика, селитры, азотной кислоты и пиролюзита. На подводных лодках и сейчас получают кислород, разлагая богатые этим элементом хлораты Ii перхлораты. В любой школьной лаборатории демонстрируют опыт — разложение воды на кислород и водород электролизом. Но ни один из этих способов не может удовлетворить потребности промышленности в кислороде.
Энергетически проще всего получить элемент № 8 из воздуха, поскольку воздух — не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°С. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть.
Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°С. Можно сказать, что проблема получения кислорода — это проблема получения холода.
Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух, обязан охлаждаться. Машины, в которых это происходит, называют детандерами.
До 1938 г. для получения жидкого воздуха пользовались только поршневыми детандерами. По существу, такой детандер — это аналог паровой машины, только работает в нем не пар, а сжатый воздух.
Петр Леонидович Капица (р. 1894) — создатель турбодетандера для получения жидкого кислорода; за эту работу он в 1945 г. удостоен звания Героя Coциалистического Труда. Им проведены исследования свойств жидкого гелия и открыто явление сверхтекучести
Чтобы получить жидкпй воздух с помощью таких детандеров, нужны были давления порядка 200 атм, причем по неизбежным техническим причинам на разных стадиях процесса давление было не одинаковым: от 45 до 200 атм. К.п.д. установки был немногим выше, чем у паровой машины. Установка получилась сложной, громоздкой, дорогой.
В конце 30-х. годов советский физик академик П. Л. Капица предложил использовать в качестве детандера турбину. Идея — не новая, ее еще в конце прошлого века высказывал Дж. Рэлей, но к.п.д. «докапицынских» турбин для ожижения воздуха был невысок. Поэтому небольшие турбодетандеры лишь выполняли кое-какую подсобную работу при поршневых детандерах.
Капица создал новую конструкцию, которая, по словам изобретателя, была «как бы компромиссом между водяной и паровой турбиной». Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.
Такая конструкция турбины позволила поднять к.п.д. установки с 0,5 до 0,8. И, кроме того, турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Очевидно, что 6 атм получить намного проще и дешевле, чем 200. Немаловажно для экономики и то, что энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.
Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода. Они работают не только у нас, но и во всем мире.
Первый опытный образец турбодетандера был невелик. Его ротор восьми сантиметров в диаметре весил всего 250 г. Но, как писал П. Л. Капица в 1939 г., «экспериментальная эксплуатация этого турбодетандера показала, что он является надежным и очень простым механизмом. Технический к.п.д. получается 0,79—0,83». И этот турбодетандер стал «сердцем» первой установки для получения кислорода новым методом.
В 1942 г. построили подобную, но уже намного более мощную установку, которая производила до 200 кг жидкого кислорода в час. В конце 1944 г. вводится в строй самая мощная в мире турбокислородная установка, производящая в 6—7 раз больше жидкого кислорода, чем установка старого типа, и при этом занимающая в 3—4 раза меньшую площадь.
Современный блок разделения воздуха БР-2, в конструкции которого также использован турбодетандер, мог бы за сутки работы снабдить тремя литрами газообразного кислорода каждого жителя СССР.
30 апреля 1945 г. Михаил Иванович Калинин подписал Указ о присвоении академику П. Л. Капице звания Героя Социалистического Труда «за успешную разработку нового турбинного метода получения кислорода и за создание мощной турбокислородной установки». Институт физических проблем Академии наук СССР, в котором сделана эта работа, был награжден орденом Трудового Красного Знамени.
В наши дни быстро растет потребность в кислороде многих отраслей промышленности, в первую очередь металлургии. Соответственно растут мощности воздухоразделительных установок. А источник кислорода один — атмосфера.
Несколько строк в заключение
…В заключение зададим вопрос: неужели же доблесть, мужество, талант, остроумие, воображение — все эти замечательные свойства человеческого духа обусловлены только кислородом? — Такова теория доктора Окса.
Этого мнения, при всем уважении к кислороду, автор не разделяет. He надо приписывать кислороду того, что он дать не может. Он и без этого слишком много для нас значит.
ПРИЧИНА «ЭЛЕКТРИЧЕСКОГО ЗАПАХА». «Электрический запах» неизменно появлялся во время первых опытов по электролизу воды. Лишь в середине прошлого века было доказано, что этот запах принадлежит не самому электричеству, а попутно образующемуся при электролизе веществу, которое назвали озоном (от греческого όξω — пахну).
Вскоре было доказано, что озон состоит только из кислородных атомов; он образуется под действием электрических разрядов в воздухе и в чистом кислороде. Озон в полтора раза плотнее обычного кислорода. Его формула O3. Озон гораздо легче, чем кислород, превращается в жидкость, но в твердое состояние переходит при температуре, довольно близкой к точке плавления кислорода. Температура кипения кислорода и озона соответственно минус 182,97 и минус 111,9°С, а температура плавления — минус 218,8 для O2 и минус 192,7°С для O3. Цвет жидкого кислорода светло-голубой, озона — темно-синий с фиолетовым оттенком. И в газообразном состоянии озон не бесцветен, ему присуща довольно интенсивная синяя окраска.
Но мало кто видел синий озон — это вещество не стойко, его очень трудно сконцентрировать. При очень малых концентрациях запах у озона приятный, освежающий. Но если бы в воздухе был хотя бы 1% озона, то дышать этим воздухом мы бы уже не смогли, потому что озон весьма токсичен.