Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов (электронные книги без регистрации TXT) 📗
Здесь наряду с коррозионной и тепловой стойкостью никеля, его пластичностью и прочностью очень ценится низкая упругость пара: при рабочей температуре около 750°С объем электронной лампы насыщается ничтожным количеством никеля — порядка 10-12 г, которое не нарушает глубокого вакуума.
Во многих отношениях замечательны магнитные свойства никеля.
В 1842 г. Дж. П. Джоуль описал увеличение длины стальных прутков при намагничивании. Через 35 лет физики добрались и до химических собратьев железа — кобальта и никеля. И тут оказалось, что кобальтовые прутки тоже удлиняются в магнитном поле, а у никеля этот замечательный эффект не обнаруживается. Еще через несколько лет (в 1882 г.) выяснилось, что никель не только не удлиняется, а, наоборот, даже укорачивается в магнитном поле. Явление было названо магнитострикцией. Сущность его состоит в том, что при наложении внешнего магнитного поля беспорядочно расположенные микромагнитики металла (домены) выстраиваются в одном направлении, деформируя этим кристаллическую решетку. Эффект обратим: приложение механического напряжения к металлу меняет его магнитные характеристики.
Поэтому механические колебания в ферромагнитных материалах затухают гораздо быстрее, чем в неферромагнитных: энергия колебаний расходуется на изменение состояния намагниченности. Понимание природы этого «магнитомеханического затухания» позволило создать не боящиеся усталости сплавы для лопаток турбин и многих других деталей, подвергающихся вибрации.
Но, пожалуй, еще важнее другая область применения магнитомеханических явлений: стерженек из никеля в переменном магнитном поле достаточной частоты становится источником ультразвука.
Раскачивая такой стерженек в резонансе (для этого подбирают соответствующую длину), достигают колоссальной для ультразвуковой техники амплитуды колебаний — 0,01% от длины стержня.
Никелевые магнитострикторы были применены, между прочим, при никелировании в ультразвуковом поле: благодаря ультразвуку получаются чрезвычайно плотпые и блестящие покрытия, причем скорость их нанесения может быть гораздо выше, чем без озвучивания. Так «никель сам себе помогает».
Никель обнаружен в железных метеоритах. «Масса самородного железа в 71 венский фунт весом, которая выпала на воздуха на глазах у нескольких очевидцев в шесть часов пополудни 26 мая 1751 г. близ деревни Грашина в Хорватии и зарылась в землю на три сажени на незадолго до того вспаханном поле»
Ультразвук имеет и множество других применений. Однако никто, по-видимому, не исследовал воздействия быстропеременного магнитного поля на реакции с участием металлического никеля: вызванная магнитострикцией пульсация поверхности должна была бы существенно повлиять на химическое взаимодействие, так что изучение реакции «звучащего» металла может выявить новые неожиданные эффекты.
…и его сплавы
Обратимся теперь к сплавам никеля. Но лучше сказать вернемся: ведь история применения никеля началась со сплавов: одни — железоникелевые — человек получил в готовом виде, другие — медно-никелевые — он научился выплавлять из природных руд, еще не зная, какие металлы в них входят.
А сейчас промышленность использует несколько тысяч сплавов, в которые входит никель, хотя и в наше время сочетания железо — никель и медь — никель, предоставленные нам самой природой, остаются основой подавляющего большинства никельсодержащих сплавов. Но, наверное, самое важное — это не количество и разнообразие этих сплавов, а то, что в них человек сумел усилить и развить нужные нам свойства никеля.
Известно, например, что твердые растворы отличаются большей прочностью и твердостью, чем их компоненты, но сохраняют их пластичность. Поэтому металлические материалы, подлежащие обработке посредством ковки, прокатки, протяжки, штамповки и т. п., создают на основе систем, компоненты которых образуют между собой твердые растворы. Именно таковы сплавы никеля с медью: оба металла полностью смешиваются в любых пропорциях как в жидком состоянии, так и при затвердевании расплава. Отсюда — прекрасные механические свойства медно-никелевых сплавов, известные еще древним металлургам.
Праотец многочисленного рода этих сплавов — «пакт-хонг» (или «пекфонг»), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX в. под названиями аргентан, немецкое серебро, нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый — серебряный — внешний вид сплава. Никель обладает интересной «отбеливающей способностью»: уже 20% его полностью гасят красный цвет меди.
«Новое серебро» успешно конкурировало со старым, завоевав популярность у ювелиров. Применили его и для чеканки монет. В 1850 г. Швейцария выпустила первые монеты из нейзильбера, и вскоре ее примеру последовали почти все страны. Американцы даже называют свои пятицентовые монетки «nickel». Масштабы этого применения медно-никелевых сплавов огромны: столбик из «никелевых» монет, которые изготовлены в мире за 100 с небольшим лет, достиг бы Луны!
Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1% марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов!) против ударной, или струевой, коррозии. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.
А вот более молодой сплав меди и никеля — дитя случая и находчивости. В начале XX в. возникли осложнения при переработке богатых канадских руд, содержавших вдвое больше никеля, чем меди; разделение этих двух металлов было твердым орешком для металлургов. Полковник Амброз Монель, тогдашний президент Международной никелевой компании, подал смелую мысль — не разделять медь и никель, а выплавлять их совместно в «натуральный сплав». Инженеры осуществили эту идею — и получился знаменитый монель-металл — один из главнейших сплавов химического машиностроения. Сейчас создано много марок монель-металла, различающихся природой и количеством легирующих добавок, но основа во всех случаях прежняя — 60–70% никеля и 28–30% меди. Высокая химическая стойкость, блестящие механические свойства и сравнительная дешевизна (его и сейчас выплавляют без предварительного разделения меди и никеля) создали монель-металлу славу среди химиков, судостроителей, текстильщиков, нефтяников и даже парфюмеров.
Если монель-металл — «натуральный сплав» из сульфидных медно-никелевых руд, то ферроникель — естественный продукт плавки окисленных руд никеля. Отличие состоит в том, что» зависимости от условии плавки в этом продукте можно широко менять соотношение никеля и железа (большую часть железа переводят в шлак). Ферроникель различного состава используют затем в качестве полупродукта для получения многих марок стали и других железоникелевых сплавов.
Видманштеттова структура. В 1808 г. директор Промышленного музея в Вене Алоиз фон Вндманштеттен, получив от своего друга образцы железных метеоритов, отполировал их и протравил азотной кислотой. Возникли изящные линии травления, отражающие характерную структуру сплава
Таких сплавов великое множество. Всем хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. На них уходит почти половина всего никеля, добываемого человеком. Инконель — «аристократический родственник» нержавеющих сталей, в котором железа почти не осталось, это сплав (точнее, группа сплавов на основе никеля и хрома с добавками титана и других элементов. Инконель стал одним из главных материалов ракетной техники. Нихром (20% Cr, 80% Ni) — важнейший из сплавов сопротивления, основа большинства электронагревательных приборов, от домашних электроплиток до мощных промышленных печей. Менее известны элинвар (45% Ni, 55% Fe; легирующие добавки — Cr, Mo, W), сохраняющий постоянную упругость при различных температурах, и платинит (49% Ni, 51% Fe). Последний не содержит платины, но во многих случаях заменяет ее. Как и платину, его можно впаять в стекло, и спай не треснет, поскольку коэффициенты теплового расширения стекла и платинита совпадают. У инвара (36% Ni, 64% Fe) коэффициент теплового расширения близок к нулю.