Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Математика » Математика. Утрата определенности. - Клайн Морис (читать книги бесплатно полные версии .TXT) 📗

Математика. Утрата определенности. - Клайн Морис (читать книги бесплатно полные версии .TXT) 📗

Тут можно читать бесплатно Математика. Утрата определенности. - Клайн Морис (читать книги бесплатно полные версии .TXT) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Свою естественнонаучную деятельность Галилей сосредоточил на проблемах материи и движения. Он независимо от Декарта установил принцип инерции, ныне известный как первый закон движения Ньютона. Галилею удалось также получить законы движения поднимающихся вертикально вверх и падающих тел, движения тел по наклонной плоскости, а также тел, брошенных под некоторым углом к горизонту. Галилей показал, что тело, брошенное под углом к горизонту, движется по параболе. Резюмируя, можно сказать, что Галилей исследовал законы движения земных тел. И хотя, как во всяком большом открытии, у Галилея заведомо были предшественники, никто из них не сознавал с такой ясностью идеи и принципы, которым должно руководствоваться научное исследование, и не проводил эти принципы в жизнь столь просто и эффективно. 

Будучи глубоко новаторской по духу, философия и методология науки Галилея подготовила почву для свершений Исаака Ньютона, который родился в тот самый год, когда ушел из жизни Галилей.

III

Математизация науки 

Так как во всяком учении о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика. {28}

Иммануил Кант
Математика. Утрата определенности. - i_014.jpg

Если убеждение в том, что математические законы естествознания представляют собой истины, органически включенные господом богом в созданный им план Вселенной, и подвергалось каким-то сомнениям, то они были окончательно развеяны Исааком Ньютоном (1643-1727). Хотя Ньютон был профессором математики Кембриджского университета и по праву считается одним из величайших математиков всех времен, его значение как физика превосходит его математическую репутацию. Работы Ньютона положили начало новой эре и послужили основой новой методологии естествознания, отводившей математике более значительную и фундаментальную роль, чем это было прежде. 

В трудах Коперника, Кеплера, Декарта, Галилея и Паскаля было доказано, что некоторые явления природы протекают в соответствии с математическими законами. Все эти ученые не только были глубоко убеждены в том, что бог сотворил Вселенную по математическому плану, но и утверждали, что математическое мышление человека согласуется с божественными предначертаниями и потому пригодно для расшифровки этого плана.Философия (или методология) науки, господствовавшая в XVIII в., была сформулирована и подробно разработана Декартом. Именно Декарту принадлежит известное высказывание о том, что вся физика сводится к геометрии, которую и сам Декарт, и другие авторы той поры рассматривали как синоним математики. В то же время картезианство — научная методология Декарта, разделяемая большинством предшественников Ньютона, в том числе Гюйгенсом, отводила естествознанию автономную от математики роль, вменяя в обязанность человеку поиск физическихобъяснений явлений природы. 

Греки, главным образом Аристотель, также пытались объяснять явления природы с помощью физических понятий. Главенствующая в классическую эпоху теория утверждала, что вся материя построена из четырех элементов (земли, воздуха, огня и воды), наделенных одним или несколькими свойствами (тяжестью, легкостью, сухостью и влажностью). Наблюдаемое поведение материи объясняется различными сочетаниями этих свойств. Так, огонь стремится вверх, потому что он легкий, а земная материя падает, так как она наделена таким свойством, как тяжесть. К свойствам, которые греки приписывали четырем основным элементам, средневековые ученые добавили множество новых, например симпатию, вызывающую взаимное притяжение тел (железа и магнита), и антипатию, которой объяснялось взаимное отталкивание тел. 

Декарт отверг все эти свойства и стал утверждать, что все физические явления могут быть объяснены материей и движением. Существенным признаком материи Декарт считал протяженность, а так как протяженность измерима, то она может быть сведена к математике. Более того, протяженность не существует вне материи. Следовательно, пустота невозможна. Материя же взаимодействует с материей лишь при непосредственном соприкосновении и состоит из мельчайших невидимых частиц, различных по своим размерам, форме и другим свойствам. Так как частицы материи слишком малы и поэтому их невозможно наблюдать, для объяснения более крупных по своим масштабам явлений необходимо принять определенные гипотезы о поведении частиц. Все пространство заполнено частицами, образующими иногда скопления значительных размеров, например планеты Солнечной системы. Такова сущность теории вихрей Декарта. 

Декарт стал основоположником механистической теории. Его последователями были французский философ и священник Пьер Гассенди (1592-1655), английский философ Томас Гоббс (1588-1679) и голландский математик и физик Христиан Гюйгенс (1629-1695). Так, в «Трактате о свете» (1690) Гюйгенс попытался объяснить оптические явления, исходя из гипотезы, что все пространство заполнено частицами эфира, по которым — от одной к другой — передается движение света. Полное название сочинения Гюйгенса — «Трактат о свете, в котором объяснены причины того, что с ним происходит при отражении и преломлении, в частности при странном преломлении исландского шпата» [19]. В первой главе «Трактата о свете» Гюйгенс утверждает, что в истинной философии «причину всех естественных явлений постигают при помощи соображений механического характера», и добавляет, что, по его мнению, «так и следует поступать, в противном случае приходится отказаться от всякой надежды когда-либо и что-нибудь понять в физике» ([19], с. 12). Гассенди расходится во мнении с Гюйгенсом лишь в одном: он считает, что атомы движутся в пустоте. 

Физические гипотезы, касающиеся поведения мельчайших частиц, позволяли, по крайней мере в общих чертах, объяснить крупномасштабные явления в природе; однако они имели чисто умозрительный характер. Кроме того, физические гипотезы Декарта и его последователей были не количественными, а лишь качественными. Они позволяли объяснять явления, но не давали возможности предсказывать: результаты наблюдения или экспериментов для картезианцев всегда оказывались неожиданными. Лейбниц назвал весь свод подобных физических гипотез не более чем прекрасной выдумкой. 

Начало иной философии науки было положено Галилеем, который провозгласил, что наука должна стремиться к математическому описанию явления, а не к физическому объяснению его. Кроме того, физические принципы надлежит выводить из экспериментов и индуктивных умозаключений, сделанных на основании результатов опытов. Следуя этой философии, Ньютон под влиянием своего учителя Исаака Барроу изменил весь ход научного развития, приняв вместо физических гипотез математическиепосылки, что позволило делать достоверные предсказания, к которым призывал Фрэнсис Бэкон. Следует особо подчеркнуть, что свои математические посылки Ньютон выводил из экспериментов и наблюдений. 

Предтечей Ньютона был Галилей, изучавший свободное падение тела и движение тел, брошенных под углом к горизонту. Исаак Ньютон рассмотрел гораздо более широкую проблему, занимавшую умы ученых в середине XVII в.: можно ли установить связь между законами движения земных тел, открытыми Галилеем, и законами движения небесных тел, открытыми Кеплером? Идея о том, что законы любого движения должны следовать из небольшого числа универсальных законов, может показаться грандиозной и необычной, хотя религиозным математикам XVII в. она представлялась весьма естественной. Бог сотворил Вселенную, и все явления природы не могут не подчиняться единому плану творца. А коль скоро Вселенную создавал единый разум, то весьма вероятно, что все явления в природе протекают в соответствии с одним и тем же сводом законов. Математикам и естествоиспытателям XVII в., занятым разгадыванием плана творца, поиск некоего общего, скрытого за внешним различием движений земных и небесных тел, казалсявполне разумным. 

Перейти на страницу:

Клайн Морис читать все книги автора по порядку

Клайн Морис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Клайн Морис. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*