Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Математика » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (серии книг читать бесплатно .TXT) 📗

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (серии книг читать бесплатно .TXT) 📗

Тут можно читать бесплатно У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (серии книг читать бесплатно .TXT) 📗. Жанр: Математика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_62.jpg

Число, которое мы только что вычислили, не назначено никакому натуральному числу. Оно не может быть назначено первому числу, потому что они отличаются первым знаком после запятой. Также оно не может быть назначено второму числу, потому что они отличаются вторым знаком после запятой. Также оно не может быть назначено третьему числу, потому что они отличаются третьим знаком после запятой, и так далее.

Поскольку существует число, которое избежало назначения, наш пример не может представлять собой биективного соответствия между N и R. Любая попытка такое соответствие определить провалится по описанной причине, следовательно, мы не можем утверждать, что у множеств N и R одно кардинальное число.

КОНТИНУУМ-ГИПОТЕЗА

Кардинальное число действительных чисел больше, чем кардинальное число натуральных. Кантор доказал это в 1873 году и сразу же задался вопросом, существует ли некое множество, кардинальное число которого больше N, но меньше R? В течение нескольких лет он предпринял много попыток найти промежуточное множество между N и R, но ему это так и не удалось. В конце концов, в 1877 году он сформулировал гипотезу о том, что промежуточного множества не существует. Она стала известна как континуум-гипотеза: "Не существует такого множества А, что card (N) < card (А) < card (R)".

ПОЛ КОЭН

Пол Джозеф Коэн родился в Лонг- Бренче (Нью-Джерси, США) в 1934 году в семье польских иммигрантов. С самого раннего возраста он демонстрировал экстраординарные математические способности и считался вундеркиндом. Это позволило ему, несмотря на скудные финансы родителей, учиться в лучших школах Нью- Йорка. Коэн получил высшее образование в Чикагском университете, где в 1958 году защитил докторскую диссертацию, в которой обобщал проблему единственности представления периодической функции рядом Фурье (над этой проблемой работал в начале 1870-х Кантор, и она привела его к разработке собственной теории).

Коэн внес значительный вклад в различные области математики, такие как теория чисел, математический анализ и логика. В1966 году на Международном математическом конгрессе в Москве он получил Филдсовскую премию — самую престижную математическую награду — за работу над континуум-гипотезой. Пол Коэн скончался в Калифорнии в марте 2007 года.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_63.jpg

Кантор безуспешно пытался доказать ее в течение многих лет. К 1900 году решения все еще не было, и Гильберт поставил эту гипотезу на первое место в списке проблем в своем знаменитом докладе на конгрессе в Париже.

Решение проблемы в том виде, в каком мы знаем его сейчас, было получено в два этапа. Первый был завершен Гёделем в конце 1930-х годов. В 1938 и 1940 годах Гёдель опубликовал две статьи, где вкратце изложил различные аспекты первой части решения, которое детально изложено в курсе, прочитанном в Институте перспективных исследований. Конспекты курса были изданы в форме книги в 1940 году.

Вторую часть решения получил в 1963 году Пол Коэн — американский математик, который также работал в Институте перспективных исследований. Говорят, Коэн первым показал свое решение Гёделю, но когда он пришел к знаменитому коллеге, тот как раз переживал пик маниакально-депрессивного кризиса и не захотел впускать гостя, поэтому ему пришлось просовывать бумаги под дверь. Через несколько дней Гёдель позвонил коллеге и пригласил выпить чаю, из чего Коэн сделал вывод, что его решение верно. И действительно, за эту работу ученый в итоге получил Филдсовскую премию — для математиков она эквивалентна Нобелевской.

РЕШЕНИЕ ГЁДЕЛЯ И КОЭНА

Верна ли континуум-гипотеза? Это до сих пор неизвестно, поскольку ответ, найденный Гёделем и Коэном, состоит в том, что ни подтвердить континуум-гипотезу, ни опровергнуть ее невозможно на основе аксиом теории множеств. Если обозначить СН высказывание, в котором говорится, что "не существует множества с кардинальным числом, промежуточным между N и R", то СН для теории множеств — это идеальный пример первой теоремы Гёделя о неполноте: ни оно, ни его отрицание недоказуемы.

Как Гёдель и Коэн доказали это? Обозначим • абстрактную числовую операцию и предположим, что она удовлетворяет двум аксиомам:

— аксиома 1: операция коммутативна, то есть a • b = b • а;

— аксиома 2: у операции есть нейтральный элемент, то есть такой, что при операции с ним не происходит никаких изменений (если этот нейтральный элемент назвать е, то а • е = а).

Моделью назовем любой конкретный пример, любую специфическую операцию, выполняющую эти аксиомы. Например, сумма целых чисел — это модель, поскольку сумма коммутативна и имеет нейтральный элемент (то есть 0). Произведение целых чисел — также модель, поскольку эта операция также коммутативна и имеет нейтральный элемент (то есть 1). Вычитание целых чисел, наоборот, не является моделью, поскольку оно некоммутативно (например, 2 - 3 — не то же самое, что 3-2).

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' — элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е — нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_64.jpg

Сверху — аксиомы коммутативной операции с нейтральным элементом. Слева внизу — пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу — пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Если бы существование поглощающего элемента было доказуемым на основе аксиом, то любая коммутативная операция с нейтральным элементом обладала бы поглощающим элементом. Однако это не так, поскольку у суммы, коммутативной операции с нейтральным элементом, нет поглощающих элементов. Следовательно, утверждение Р недоказуемо на основе аксиом 1 и 2.

А если бы отсутствие поглощающего элемента было доказуемым, то ни одна операция, выполняющая аксиомы 1 и 2, не имела бы поглощающих элементов. Однако у произведения целых чисел он есть, поскольку 0 — поглощающий элемент, так что отрицание Р также недоказуемо на основе аксиом. Существование или отсутствие поглощающего элемента не может быть ни доказано, ни опровергнуто на основе аксиом 1 и 2 (см. схему на этой странице).

Перейти на страницу:

Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте. отзывы

Отзывы читателей о книге У интуиции есть своя логика. Гёдель. Теоремы о неполноте., автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*