Математика. Поиск истины. - Клайн Морис (книги онлайн полностью txt) 📗
Порядок Вселенной может быть также и порядком нашего разума. Мы не просто наблюдатели реальности, мы — ее активные участники. Природа — не открытая книга, которую мы можем читать как независимые наблюдатели. Такой отказ от привычных требований физического объяснения заставил многих физиков и философов усомниться в том, что мы располагаем адекватным описанием атомных явлений. В частности, вероятностное описание, по их мнению, надлежит рассматривать как временную меру, на смену которой придет описание детерминистическое.
Не следует забывать, однако, о том, что квантовая теория возникла сравнительно недавно. Вполне возможно, что через какие-нибудь пятьдесят лет неуклюжий гибрид корпускулярной и корпускулярно-волновой теорий превратится в простую и ясную теорию. Много из того, что мы знаем о различных частицах, почерпнуто из «пунктирных следов», оставленных ими в различного рода регистрирующих устройствах. Такие следы возникают при бомбардировке частицами мишеней в ускорителях. С другой стороны, в ускорителях бомбардирующие частицы приобретают огромную энергию, и можно было бы заключить, что эта энергия превращается в массу. Можно ли считать рождающуюся таким образом массу подлинной реальностью или перед нами обманчивое ощущение, рожденное нашими ненадежными и поверхностными чувственными восприятиями? Если не вдаваться в подробности, то массу заведомо следует считать статистическим эффектом.
Как видим, понимание структуры атома имеет первостепенное значение для физики, но оно приносит поистине неоценимую пользу и химии, и биологическим исследованиям. Возможно, биохимии удастся раскрыть секреты жизни и наследственности и тем самым укрепить здоровье человека и продлить его жизнь. Как бы то ни было, можно с уверенностью сказать, что исследования природы атома оказались весьма плодотворными.
Для нас наиболее существенно было понять, что наши модели структуры атома не физические. Они от начала и до конца математические. Математика позволяет открыть и установить порядок там, где царил хаос. По словам Дирака и Гейзенберга, непротиворечивое математическое описание природы — путь к истине в физике. Необходимость наглядного представления или физического объяснения — не более чем пережиток классической физики.
XI
Реальность в теоретической физике
Мы находимся в положении, несколько аналогичном положению человека, держащего в руках связку ключей и пытающегося открыть одну за другой несколько дверей. Рано или поздно ему всегда удается подобрать ключ к очередной двери, но сомнения относительно взаимно однозначного соответствия между ключами и дверями у него остаются. {13}
Мы начали наше повествование с вопроса: существует ли внешний мир? Несмотря на противоположные утверждения Беркли и различные варианты их, высказанные другими философами, мы отвечаем на этот вопрос утвердительно. Однако наше чувственное восприятие мира не только ограниченно, но и способно вводить в заблуждение. Не многим полезнее оказывается и наша интуиция, даже обостренная опытом. Поэтому при всей искусственности математики мы вынуждены прибегать к ней, чтобы откорректировать и расширить наши представления о внешнем мире.
В свое время люди приняли идею об обращении Земли вокруг Солнца не потому, что гелиоцентрическая теория оказалась точнее предшествующей ей геоцентрической, а потому, что гелеоцентрическая теория математически проще. Если же подходить с точки зрения чувственного восприятия, то гелиоцентрическая теория заведомо менее правдоподобна.
Чтобы объяснить движения планет по их строго эллиптическим орбитам, Исаак Ньютон вывел закон всемирного тяготения — теорию гравитации, физическую природу которой ни ему самому, ни его преемникам на протяжении последующих трехсот лет объяснить так и не удалось. Чувственное восприятие и в этом случае оказалось бесполезным.
Чисто математические соображения привели Джеймса Клерка Максвелла к выводу о существовании электромагнитных волн, не доступных восприятию ни одного из наших пяти органов чувств. Однако в реальности электромагнитных волн вряд ли приходится сомневаться: любой радио- или телевизионный приемник безоговорочно убеждает нас в их существовании. Максвелл утверждал также, что свет представляет собой разновидность электромагнитных волн и в этом случае можно с полным основанием считать, что покров тайны с этого явления сняла математика.
Невозможность найти абсолютную систему отсчета для описания пространства и времени (вопреки убеждению Ньютона в абсолютности пространства и времени) и стремление «примирить» законы механики Ньютона с теорией электромагнитного поля Максвелла привели Эйнштейна к созданию специальной теории относительности. Сущность ее в несколько вольной формулировке сводится к утверждению, что длина, масса, время и одновременность определяемы не абсолютно, а только относительно наблюдателя. Экспериментальные подтверждения специальной теории относительности вынуждают нас принять эти ее выводы как твердо установленные факты. Общей теории относительности удалось объяснить явление тяготения, не прибегая к загадочной гравитации, что побуждает нас с большим доверием относиться к ней. Нашу уверенность в справедливости этой теории укрепляет и экспериментальное подтверждение сделанных на ее основе предсказаний.
Квантовая теория, занимающаяся изучением структуры атома, сама почти провоцирует нас на недоверие к ней. Явления, которые она рассматривает, мы не можем наблюдать непосредственно. Нам остается лишь судить о них по производимым ими эффектам. Разумеется, нелегко поверить, что испускаемые атомами электроны ведут себя не как частицы, а как волны, но вместе с тем их можно интерпретировать и как частицы, поведение которых имеет вероятностный характер: утверждение о том, что электрон в данный момент времени находится в определенной точке пространства, не достоверно, а справедливо лишь с определенной вероятностью. Тот факт, что микромир «населен» множеством частиц и античастиц, практически все из которых обладают отличной от нуля вероятностью распада, приводит нас к заключению, в которое трудно поверить: во внешнем мире не существует абсолютно стабильной, прочной и неразрушимой материальной субстанции.
Главы, в которых мы рассматривали теоретическую (математическую) физику, естественно, не охватывают всех ее достижений. Такая, например, область физической науки, как гидродинамика, также использует математические методы при изучении поведения воды, газов и других жидкостей, но не приводит ни к каким неожиданным выводам относительно реальности. Наша физическая интуиция вполне позволяет нам предвидеть результаты гидродинамических исследований. Иное дело электромагнитные и квантовые явления. Они либо противоречат нашему чувственному опыту, либо обнаруживают зияющий пробел в знаниях, приобретенных на основе этого опыта.
Наше современное понимание реальности разительно отличается от концепций реальности предшествующих поколений, будь то последователи Аристотеля или представители математической физики XVII-XVIII вв. По мере того как законы механики и всемирного тяготения распространялись на все новые явления, а планеты, кометы и звезды продолжали неукоснительно следовать путями, столь точно описанными математикой, мысли Декарта, Галилея и Ньютона о том, что Вселенную можно описать, пользуясь понятиями массы, силы и движения, все глубже проникали в сознание людей и превратились в убеждение почти каждого мыслящего современного человека.
Беркли в свое время охарактеризовал одно из основных понятий математического анализа — понятие производной — как «призрак покинувших нас величин». Многое в современной физической теории свидетельствует о призрачности былых, казавшихся незыблемыми классических представлений о материи. Но, облекая в математические формулировки законы, которые описывают призрачные «поля-духи», не имеющие наглядных аналогий в реальности, и выводя из этих законов следствия, мы приходим к заключениям, которые при надлежащей физической интерпретации допускают проверку с помощью наших чувственных восприятий.
13
Вигнер Ю. Непостижимая эффективность математики в естественных науках (см. [26], с. 183).