Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Медицина » Человек, который принял жену за шляпу и другие истории из врачебной практики - Сакс Оливер

Человек, который принял жену за шляпу и другие истории из врачебной практики - Сакс Оливер

Тут можно читать бесплатно Человек, который принял жену за шляпу и другие истории из врачебной практики - Сакс Оливер. Жанр: Медицина. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В книге «Нить жизни» (1984) Ричард Вольгейм проводит резкую черту между вычислениями и «иконическими» ментальными состояниями, заранее отвечая на возможные возражения:

Утверждение о неиконичности вычислений можно оспаривать на том основании, что мы иногда придаем им зримую форму на листе бумаги. Но подобный пример не может служить опровержением, поскольку в этом случае мы видим не вычисление как таковое, а его изображение; вычисляются числа, записываются же цифры, которые их представляют.

Лейбниц, напротив, проводит многообещающую аналогию между числами и музыкой. «Наслаждение, доставляемое нам музыкой, – пишет он, – проистекает из исчисления, но исчисления бессознательного. Музыка есть не что иное, как бессознательная арифметика».

Как же следует понимать особые способности близнецов и им подобных? Композитор Эрнст Тох, по словам его внука Лоуренса Вешлера, услышав раз, удерживал в памяти длиннейшие серии чисел; метод его заключался в превращении числовых последовательностей в соответствующие им мелодии. Джедедия Бакстон, один из наиболее неуклюжих и упорных счетчиков всех времен, одержимый неподдельной и, возможно, патологической страстью к счету (по его собственным словам, он «пьянел от вычислений»), напротив, превращал музыку и даже драму в числа. «Во время танца, – сообщает одно из свидетельств 1754 года, – его внимание занимало количество шагов; об утонченном музыкальном произведении он заявил однажды, что был совершенно сбит с толку бессчетным набором составляющих его звуков; даже явившись на представление знаменитого Гаррика [131], он только тем и занимался, что считал произнесенные слова, в чем, как сам утверждает, вполне преуспел».

Здесь мы сталкиваемся с двумя изящными крайностями – музыкант, превращающий числа в музыку, и счетчик, превращающий музыку в числа. Вряд ли существуют более противоположные типы мышления.

Я полагаю, что близнецы, не способные ни к каким вычислениям, но глубоко чувствующие числа, ближе не к Бакстону, а к Тоху. Но Майкл и Джон (и это нелегко представить себе нам, нормальным людям) не переводят числа на язык музыки, а воспринимают их непосредственно, как мы воспринимаем образы, звуки и разнообразные формы самой природы. Они не счетчики и обращаются с числами иконически. Близнецы пробуждают к жизни числовые существа и обитают в странных числовых пространствах; они свободно перемещаются по гигантским числовым ландшафтам. Драматурги чисел, они создают из них целую вселенную. Их мышление не похоже ни на какое другое, и одна из самых странных его особенностей в том, что оно имеет дело только с числами. Близнецы не оперируют числами, как машины, на основании инструкций, но видят их непосредственно: их числовая вселенная представляет собой огромный природный театр, заполненный бесконечными персонажами.

Если начать искать в истории аналоги такой иконичности, то их можно обнаружить среди ученых. Дмитрий Менделеев, к примеру, носил с собой выписанные на карточки численные характеристики химических элементов, пока не усвоил их так основательно, что думал о них уже не как о наборах свойств, а (по его собственным словам) «как о знакомых лицах». Он видел элементы графически, личностно, как членов семьи, и из их периодически организованной совокупности складывалось для него единое химическое лицо вселенной. Подобное научное мышление является, по существу, иконическим и видит всю природу, как лица, картины и, возможно, музыку. Это видение, это внутреннее зрение, переплетенное с ощущениями, несмотря на свой субъективный характер, неотъемлемо связано с внешней реальностью и, возвращаясь от психического к физическому, составляет завершающую, объективирующую фазу такой науки. («Философ вслушивается в эхо симфонии мира внутри себя, – пишет Ницше, – и проецирует его обратно на мир в виде понятий и категорий»). Я подозреваю, что слабоумные близнецы слышали симфонию мира – но исключительно в числовой форме.

Душа «гармонична» независимо от показателя умственного развития, и для некоторых – например, для физиков и математиков – эта гармония главным образом интеллектуальна. Но я не могу представить себе никакой интеллектуальный объект, который не был бы одновременно чувственным; интересно, что английское слово sense означает одновременно и смысл (разум), и чувство (ощущение). Чувственный же объект, в свою очередь, не может не являться личностным, ибо нельзя чувствовать что-то не имеющее отношения к личности. Так, могучая архитектоника Баха может быть «таинственным, отраженным опытом целого мира» (как это было для Мартина А.), но одновременно она является знакомой, неповторимой и дорогой нам музыкой. Сам Мартин остро ощущал эту двойственность – музыка Баха была для него неотделима от любви к отцу.

Близнецы, я думаю, не просто наделены необычными дарованиями – нет, в них существует особая восприимчивость к гармонии, сходная с музыкальным чувством. Эту восприимчивость можно по праву назвать «пифагорейской» – и удивляться следует не тому, что она встречается, а тому, как редко это происходит. Повторяю, душа «гармонична» независимо от коэффициента умственного развития, и потребность найти и почувствовать высшую гармонию, высший порядок в любой доступной форме является, похоже, универсальным свойством разума, независимо от его мощности.

Математику называют «царицей наук», и математики всегда считали число великой тайной. Мир неизменно казался им организованным загадочной силой числа. Это замечательно описано в предисловии к «Автобиографии» Бертрана Рассела [132]:

С неменьшей страстью стремился я к знанию. Я жаждал проникнуть в человеческое сердце, дал узнать, почему светят звезды. Я стремился также разгадать загадку пифагорействапонять власть числа над текучей, изменяющейся природой.

Странно, казалось бы, сравнивать недоразвитых близнецов с такой выдающейся личностью и глубоким умом, как Бертран Рассел, и все же я думаю, что это сравнение естественно. Да, близнецы живут исключительно в мысленном мире чисел и не испытывают ни малейшего интереса ни к сиянию звезд, ни к человеческим сердцам, но я уверен, что числа для них – не просто абстрактные и пустые сущности, а символы, «обозначающие» мир.

Многие известные счетчики относятся к числам просто как к материалу. Но только не близнецы. Недоступные им механические вычисления совершенно их не интересуют. Они, скорее, тихие созерцатели чисел и относятся к ним с благоговением и трепетом, как к священным объектам. Это их способ постижения Первого Композитора – как музыка для Мартина А.

Но и это не все. Числа для близнецов – не только божественные сущности, но и близкие друзья – возможно, единственные друзья в их отрезанном от нашей реальности мире. Такое отношение часто встречается среди числовых вундеркиндов. Стивен Смит, подчеркивая решающее значение метода и алгоритма для известных счетчиков, приводит тем не менее замечательные примеры подобной дружбы. Описывая свое «числовое» детство, Джордж Паркер Биддер говорит: «Я близко знал все числа до ста; они как бы стали моими друзьями, мне были знакомы их родственные связи и круг общения». Его современник Шиам Марат из Индии объясняет: «Когда я называю число своим другом, то хочу сказать, что мы уже много раз по разным поводам сталкивались в прошлом, и во время таких встреч я обнаруживал все новые скрытые в нем восхитительные свойства… Так что если при вычислениях мне попадается знакомое число, я радуюсь встрече с добрым приятелем».

Герман фон Гельмгольц [133], рассуждая о музыкальных способностях, пишет, что, хотя составные звуки и можно разложить на компоненты, мы слышим их обычно как неделимое целое, уникальный тон. Он говорит о «синтетическом восприятии», которое выходит за пределы интеллекта и представляет собой не поддающуюся анализу сущность музыкального чувства. Гельмгольц сравнивает звуки с лицами и считает, что мы, возможно, распознаем и те и другие сходным образом. Он почти всерьез говорит о звуках и мелодиях как об обращенных к слуху «лицах», которые мы немедленно узнаем как знакомых, со всем теплом и эмоциональной глубиной человеческого отношения.

вернуться

131

Дэвид Гаррик (1717-1779) – английский актер, знаменитый своими сценическими интерпретациями Шекспира.

вернуться

132

Бертран Рассел (1872-1970) – английский философ, математик, логик, общественный деятель.

вернуться

133

Герман фон Гельмгольц (1821-1894) – немецкий физик, физиолог и психолог.

Перейти на страницу:

Сакс Оливер читать все книги автора по порядку

Сакс Оливер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Человек, который принял жену за шляпу и другие истории из врачебной практики отзывы

Отзывы читателей о книге Человек, который принял жену за шляпу и другие истории из врачебной практики, автор: Сакс Оливер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*