Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Технические науки » Творчество как точная наука. Теория решения изобретательских задач - Альтов Генрих Саулович (полные книги txt) 📗

Творчество как точная наука. Теория решения изобретательских задач - Альтов Генрих Саулович (полные книги txt) 📗

Тут можно читать бесплатно Творчество как точная наука. Теория решения изобретательских задач - Альтов Генрих Саулович (полные книги txt) 📗. Жанр: Технические науки. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

2. Закон «энергетической проводимости» системы

Необходимым условием принципиальной жизнеспособности технической системы является скво з ной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т. д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида пере- дачи, наиболее эффективного в заданных условиях. Такова задача 53 о нагреве вещества внутри вращающейся центрифуги. Вне центрифуги энергия есть. Имеется и «потребитель», он находится внутри центрифуги. Суть задачи — в создании «энергетического моста». Такого рода «мосты» могут быть однородными и неоднородными. Если вид энергии меняется при переходе от одной части системы к другой — это неоднородный «мост». В изобретательских задачах чаще всего приходится иметь дело именно с такими мостами. Так, в задаче 53 о нагреве вещества в центрифуге выгодно иметь электромагнитную энергию (ее передача не мешает вращению центрифуги), а внутри центрифуги нужна энергия тепловая. Особое значение имеют эффекты и явления, позволяющие управлять энергией на выходе из одной части системы или на входе в другую ее часть. В задаче 53 нагрев может быть обеспечен, если центрифуга находится в магнитном поле, а внутри центрифуги размещен, например, диск из ферромагнетика. Однако по условиям задачи требуется не просто нагревать вещество внутри центрифуги, а поддерживать постоянную температуру около 250 °C. Как бы ни менялся отбор энергии, температура диска должна быть постоянной. Это обеспечивается подачей «избыточного» поля, из которого диск отбирает энергию, достаточную для нагрева до 250 °C, после чего вещество диска «самоотключается» (переход через точку Кюри). При понижении температуры происходит «самовключение» диска.

Важное значение имеет следствие из закона 2.

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи 8 об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не оконча- тельное решение, но уже сделан шаг к правильному ответу.

3. Закон согласования ритмики частей системы

Необходимым условием принципиальной жизнеспособности технической системы является согл а сование ритмики (частоты колебаний, периодичности) всех частей системы.

Примеры к этому закону приведены в гл. 1.

К «кинематике» относятся законы, определяющие развитие технических систем независимо от конкретных технических и физических факторов, обусловливающих это развитие.

4. Закон увеличения степени идеальности системы

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т. д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15–20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. л. д. двигателя и т. д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т. д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

5. Закон неравномерности развития частей системы

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее разв и тие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как затормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

6. Закон перехода в надсистему

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.

Об этом законе мы уже говорили.

Перейдем к «динамике». Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы «статики» и «кинематики» универсальны — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т. д.). «Динамика» отражает главные тенденции развития технических систем именно в наше время.

7. Закон перехода с макроуровня на микроуровень

Развитие рабочих органов системы, идет сначала на макро —, а затем на микр о у ровне.

В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т. д. Возможно развитие таких рабочих органов в пределах макроуровня: «железки» остаются «железками», но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо «железок» работа осуществляется молекулами, атомами, ионами, электронами и т. д.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода «макро-микро» и физических эффектов, реализующих этот переход.

Перейти на страницу:

Альтов Генрих Саулович читать все книги автора по порядку

Альтов Генрих Саулович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Творчество как точная наука. Теория решения изобретательских задач отзывы

Отзывы читателей о книге Творчество как точная наука. Теория решения изобретательских задач, автор: Альтов Генрих Саулович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*