Online-knigi.org
online-knigi.org » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ВЫ) - Большая Советская Энциклопедия "БСЭ" (читать книги без TXT) 📗

Большая Советская Энциклопедия (ВЫ) - Большая Советская Энциклопедия "БСЭ" (читать книги без TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (ВЫ) - Большая Советская Энциклопедия "БСЭ" (читать книги без TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Э. Г. Позняк.

Большая Советская Энциклопедия (ВЫ) - i010-001-253750021.jpg

Рисунок к ст. Выпуклая область.

Выпуклая поверхность

Вы'пуклая пове'рхность, см. Выпуклое тело .

Выпуклое тело

Вы'пуклое те'ло, геометрическое тело, обладающее тем свойством, что соединяющий две его любые точки отрезок содержится в нём целиком. На рис. тело а выпукло, а тело б не выпукло. Шар, куб, шаровой сегмент, полупространство — примеры В. т. Любая связная часть границы (см. Связное множество ) В. т. называется выпуклой поверхностью. Через каждую точку границы В. т. проходит по крайней мере одна опорная плоскость, имеющая общую точку (или отрезок, или часть плоскости) с границей тела, но не рассекающая его (плоскость Р на рис. а). В точках, где граница В. т. — гладкая поверхность, опорная плоскость будет касательной. В тех точках, где гладкость нарушается (например, в вершине куба), можно провести бесконечно много опорных плоскостей. В. т. могут быть пяти типов: конечные (граница — замкнутая выпуклая поверхность), бесконечные (граница — одна бесконечная поверхность; например, В. т., ограниченное параболоидом), бесконечные в обе стороны цилиндры (граница — замкнутая выпуклая цилиндрическая поверхность; например бесконечный круговой цилиндр), слои между парами параллельных плоскостей, всё пространство. В. т. могут быть заданы посредством опорной функции, выражающей расстояние от начала координат до опорной плоскости как функцию от внешней нормали к В. т. (т. е. единичного вектора, перпендикулярного опорной плоскости и направленного в сторону того из двух полупространств, определяемых этой плоскостью, в которой нет точек В. т.).

  Простейшими В. т. являются выпуклые многогранники — В. т., ограниченные конечным числом многоугольников. Для любого конечного В. т. можно построить как угодно близкие к нему выпуклые многогранники. Это позволяет решать многие задачи о В. т. следующим образом: задача решается для выпуклых многогранников, а затем путём предельного перехода соответствующий результат обосновывается и для любого В. т. Так, например, определяются площади выпуклых поверхностей и объёмы любых В. т. В частности, устанавливается, что если одно конечное В. т. охватывает другое, то площадь поверхности первого больше площади поверхности второго. Описанный метод был глубоко разработан А. Д. Александровым и применён для решения разнообразных новых задач теории В. т.

  Общая теория В. т. и выпуклых поверхностей составляет так называемую геометрию В. т. Задачи геометрии В. т. охватывают широкий круг вопросов: общие свойства В. т. (теоремы об опорных плоскостях, классификация В. т., приближение многогранниками), экстремальные свойства В. т. (например, шар среди всех В. т. с заданным объёмом имеет минимальную поверхность), теоремы о существовании и единственности В. т. с заданными свойствами (например, теорема о существовании выпуклого многогранника с данными направлениями и площадями граней), свойства различных классов В. т. (например, тел постоянной ширины), общие свойства выпуклых поверхностей, теоремы существования и единственности для выпуклых поверхностей, внутренняя геометрия об выпуклых поверхностей и т.д. Понятие В. т. естественно возникает в геометрии пространств постоянной кривизны. Многие перечисленные выше задачи формулируются и решаются для В. т. в таких пространствах. Методы и результаты теории В. т. используются в различных разделах математики: в геометрии, в теории чисел, в математическом анализе. Основы теории В. т. были заложены в конце 19 в. немецким математиками Г. Брунном и Г. Минковским. Важнейшие новые результаты этой теории были получены советскими математиками А. Д. Александровым и А. В. Погореловым.

  Лит.: Александров А. Д., Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; его же, Выпуклые многогранники, М. — Л., 1950; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969.

  Э. Г. Позняк.

Большая Советская Энциклопедия (ВЫ) - i009-001-223801611.jpg

Рисунок к ст. Выпуклое тело.

Выпуклость и вогнутость

Вы'пуклость и во'гнутость, свойство графика функции у = f (x ) (кривой), заключающееся в том, что каждая дуга кривой лежит не выше (не ниже) своей хорды; в первом случае график функции f (x ) обращён выпуклостью книзу (вогнутостью кверху) и сама функция называется выпуклой (рис. 1 , а), во втором — график обращён вогнутостью книзу (выпуклостью кверху) и функция называется вогнутой (рис. 1 , б). Если существуют производные f ¢(x ) и f ²(х ), то первый случай имеет место при условии, что f ²(x ) ³ 0, а второй при f ²(x ) £ 0 (во всех точках рассматриваемого промежутка). Выпуклость (книзу) можно охарактеризовать также тем, что дуга кривой лежит не ниже касательной, в окрестности любой своей точки (рис. 2 , a), а вогнутость (книзу) — тем, что дуга кривой лежит не выше касательной (рис. 2 , б). Аналогично определяются В. и в. поверхности.

Большая Советская Энциклопедия (ВЫ) - i008-pictures-001-293037690.jpg

Рис. 2 к ст. Выпуклость и вогнутость.

Большая Советская Энциклопедия (ВЫ) - i010-001-274742972.jpg

Рис. 1 к ст. Выпуклость и вогнутость.

Выпуск руды

Вы'пуск руды', перемещение руды из очистного пространства или аккумулирующей ёмкости рудника под действием силы тяжести. В. р. в думпкары, автосамосвалы, на конвейеры осуществляется через так называемые выпускные устройства. На интенсивность этого процесса оказывают влияние влажность и гранулометрический состав руды, а также конструктивные параметры выпускных устройств.

  Лит.: Малахов Г. М., Безух В. Р., Петренко П. Д., Теория и практика выпуска обрушенной руды, 2 изд., М., 1968.

Выпь

Выпь, см. Выпи .

Выравненность семян

Вы'равненность семя'н, однородность семян по величине (преимущественно по толщине). Семенная партия может иметь высокий вес 1000 семян, но состоять из неоднородных по величине (крупных и мелких) семян, обладающих разными посевными и урожайными качествами. Необходимо, чтобы семена имели высокий вес 1000 штук и хорошую выравненность (не ниже 80% для кондиционных семян), так как от этого зависит равномерное развитие всходов. В. с. зависит от приёмов выращивания семенников, метеорологических факторов, строения соцветий и др. Даже при хорошем развитии растений невыравненность семян сохраняется, что обусловлено расположением их в соцветии. Так, у злаков зерно в средней части колоса более крупное и тяжеловесное, чем в верхних и нижних частях. Особое значение В. с. имеет при гнездовых и пунктирных посевах, поэтому применяют калибровку семян кукурузы и других культур. Очистка и сортирование семян также способствуют их выравненности. В. с. определяют государственные семенные инспекции при контрольно-семенном анализе. Семена разделяют на фракции по размерам, весу, аэродинамическим свойствам, и сумму двух смежных наибольших фракций выражают в процентах к исходной навеске.

  М. К. Фирсова.

Выравнивание

Выра'внивание в статистике, метод, при помощи которого получают аналитическое и графическое выражение статистической закономерности, лежащей в основе заданного эмпирического ряда статистических данных. Путём В. ломаную линию уровней эмпирического ряда заменяют плавной «выравнивающей» кривой (в частном случае — прямой) и вычисляют уравнение этой кривой. При В. последовательно решают три задачи: выбирают тип уравнения (форму плавной кривой); вычисляют параметры (коэффициенты) этого уравнения; вычисляют (на основании уравнения) или измеряют (по графику кривой) уровни (ординаты) полученного «теоретического» статистического ряда. Тип уравнения и, соответственно, форму плавной кривой выбирают на основании общих сведений (или часто — из практического опыта) о сущности явления, о закономерностях его структуры и развития, о зависимости между его признаками и т.д. (так называемое «аналитическое» В.); при отсутствии таких предварительных сведений тип уравнения (форму кривой) часто может подсказать графическая форма ломаной, выражающей заданный эмпирический ряд.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Большая Советская Энциклопедия (ВЫ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ВЫ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*